Solve Classical Mechanics Homework Statement

sebb1e
Messages
34
Reaction score
0

Homework Statement



http://img337.imageshack.us/img337/3014/classicalmechs.jpg

I'm fine until showing that those 4 things are constants.

Homework Equations



dxj/dt=dh/dpj and dpj/dt=-dh/dxj

The Attempt at a Solution



I can't show they are constant, for example, can someone show me where I'm going wrong here for p1-0.5bx2:

d(p1-0.5Bx2)/dt=d(p1-0.5Bx2)/dxj*dh/dpj+d(p1-0.5Bx2)/dpj*(-dh/dxj)
=-0.5B*dh/dp2+(-dh/dx1)
=-0.5B(2p2-2eA2)+(eBp2+0.5e^2Bx1)

I think I'm fine on the last part as long as I can assume the constants.
 
Last edited by a moderator:
Physics news on Phys.org
There seems to be a mistake in the problem statement as the units don't work out. The product eA has units of momentum, yet the problem asks about p1-Bx2/2. The second term has units of momentum/charge. You should be looking at the quantity p1-eBx2/2.

I think your problem is you're mixing up partial and total derivatives. You should have

\frac{d}{dt}\left(p_1-\frac{1}{2}eBx_2\right) = \dot{p_1} - \frac{1}{2}eB\dot{x_2} = \frac{\partial H}{\partial x_1}-\frac{1}{2}eB\dot{x_2}

Evaluate the partial derivative and write \dot{x_2} in terms of p_2, and you should find everything cancels.
 
Thanks, that works perfectly.
I presume my mistake lay in partial dxi/dt (and pi) not being equal to the Hamilton partial derivatives.
 
Yes, exactly. The partial derivatives of the Hamiltonian give you total time derivatives, not partial time derivatives.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top