Solve Gauss' Law Problem: Electric Flux Hemisphere

AI Thread Summary
To solve the Gauss' Law problem regarding electric flux through a hemisphere, the key is to apply Gauss' law, which states that electric flux equals the integral of the electric field E dot dA. The absence of charge initially raises the question of whether electric flux is zero, but the later addition of an electric field E indicates that there is indeed flux to consider. The electric field provided is E = Eknot(1/square root of 2 i hat + 1/square root of 2 k hat), which must be incorporated into the integral setup. The discussion emphasizes the need to define the vector E field for proper integration and the importance of understanding the geometry of the hemisphere in relation to the electric field. Overall, the problem requires careful consideration of both the electric field and the geometry to determine the electric flux accurately.
Rockstar47
Messages
8
Reaction score
0
Hello, everyone. I hope that you can help me get started on one of the problems I have due this week.


Homework Statement



Find the electric flux through the hemisphere z = (square root of a^2 - x^2 - y^2).

-

The Attempt at a Solution



I'm fairly certain I need Gauss' law to help solve this. I know that the law is defined by the Electric flux being equal to the integral of E dot dA. I'm a bit confused about where to start plugging and chugging. I also have t note that there is no charge given in the problem. How does this affect things? My initial impression is to just plant my (square root of a^2 - x^2 - y^2) into the integral and due the work for both dx and dy. This would be done assuming that z tells us that our dA is in that direction. Would this make sense?
 
Physics news on Phys.org
You need to define the vector E field in order to take the dot product and integrate it, right? Or else if it's a flat E field that enters the equatorial circle of the hemisphere, you can just integrate the 2-D integral over the equatorial disk.
 
Thanks Berkeman. Yes, I believe I would need to do that, somehow...if I can determine how to set that up into the integral.

But...I have to wonder, since the problem specifically mentions that there is no charge, does that mean that there is no electric flux, either? Would it actually be zero...no charge, no flux?

Edit: There is an Electric field, however (apparently...was added to the problem later).
E = Eknot(1/square root of 2 i hat + 1/square root of 2 k hat).
 
Last edited:
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top