Solving a Copper Metal Heat Exchange Problem: Seeking Advice

AI Thread Summary
The discussion focuses on a heat exchange problem involving two identical copper blocks at different temperatures, seeking to understand the heat transfer during their thermal equilibrium. The specific heat of copper is noted as 0.1 kilocalorie/kilogram K, which is crucial for calculating the energy required to change the temperature of one block. It is emphasized that while the final temperature will be the same for both blocks, the amount of heat exchanged can vary based on the materials and sizes involved. The conversation highlights the distinction between heat and temperature, reinforcing a fundamental thermodynamic principle. Understanding these concepts is key to solving the problem effectively.
kirste
Messages
6
Reaction score
0
Just looking through some old papers and found a problem that I don't know how to solve.

Two identical 1.0-kilogram blocks of copper metal, one initially at a temp OC and the other initially at a temp of 100C are enclosed in a perfectly insulating container. The two blocks are initially separated. When the blocks are placed in contact, they come to equilibrium at a final temp of Tf. The amount of heat exchanged between the two blocks in this process is equal to which of the following? (the specific heat of copper metal is equal to 0.1 kilocalorie/kilogram K

I know that Spec. Heat=J/g.C, but other than that can someone give some general advice on how to solve this problem?

Thank you
 
Physics news on Phys.org
Assume they come to equilibrium at a temperate half way between 0,100
So work out the energy needed to heat a block by 50K
 
thats exactly what I needed to know :)
 
It's an important difference between heat and temperature - actually pretty much the fundamental law of thermodynamics = Temperatures will always end up the same however much heat has to be transferred to make that happen.

If the blocks were different materials or size they would still end up at the same temperature although not necessarily 50deg - and the energy flowing between them would not be the same.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top