You can set ##x = a+h## to write your fraction as
$$\text{fraction} = \frac{a^{a+h} - (a+h)^a}{(a+h)^{a+h} - a^a}, $$
then take the limit as ##h \to 0## using l'Hospital's rule. However, my personal preference would be to expand the numerator and denominator in a few powers of small ##|h|##. For example, the numerator is ##N_h = a^a a^h - (a+h)^a.## We can expand the first term by setting ##a = e^{\ln a}##, so that ##a^h = e^{h \ln(a)}##, which is easily expanded in powers of ##h##; keeping only linear terms in ##h## is good enough in this problem. The second term is ##(a+h)^a,## which has a binomial expansion in ##h##. Again, stopping at terms linear in ##h## is good enough in this problem. The denominator involves ##(a+h)^{a+h},## which can be written as ##e^{(a+h) \ln(a+h)} ##. You can expand the exponent ##r = (a+h) \ln(a+h)## in powers of ##h## (again, terms linear in ##h## are good enough); then you can expand the exponential ##e^r## as ##1 + r + \cdots##, where ##\cdots## stands for higher powers in ##r##. Now substitute your expansion of ##r## in terms of ##h##.
Of course, in principle, this "expansion" method is really just l'Hospital's rule in disguise, but I find it faster and easier than direct application of l'Hospital. (However, it all depends on how familiar you are with the expansions of the standard functions.)