Solving Block on Incline w/ Magnetic Force

  • Thread starter Thread starter davidmigl
  • Start date Start date
  • Tags Tags
    Block Incline
AI Thread Summary
A block of mass M is on a frictionless incline at angle phi, with a magnetic force acting horizontally on it. The challenge is to find the component of the normal force that balances the magnetic force. The user initially calculates the normal force component as mgsin(phi)cos(phi), but the textbook states it should be mgtan(phi). Clarification reveals that the horizontal force's component up the incline must equal the gravitational component, leading to the conclusion that F = mgtan(phi). The confusion arises from misunderstanding the relationship between the components of the forces acting on the block.
davidmigl
Messages
7
Reaction score
0

Homework Statement


See the figure. This is part of a larger problem involving electromagnetism. I understand the electromagnetism but am having trouble with the basic mechanics!

I have a block of mass M on a frictionless incline at angle phi. There is a magnetic force acting horizontally on the block. I need to find the component of the normal force that balances this out.

The Attempt at a Solution


The component of the normal force parallel to the incline is mg*cos(Pi/2-phi)=mgsin(phi). The angle between this component is phi. Therefore, the horizontal component should be mgsin(phi)cos(phi).

However, my book says this should be mgtan(phi). I do not know how they got that. Perhaps setting the component of the magnetic force parallel to the incline equal to the component of the normal force parallel to the incline we get Fcos(phi)=mgsin(phi) so F=mgtan(phi). But if I try to find the component of the normal force in the opposite direction of the magnetic force, I get F=mgsin(phi)cos(phi). What gives?
 

Attachments

  • physicsquestion.jpg
    physicsquestion.jpg
    4.8 KB · Views: 448
Physics news on Phys.org
davidmigl said:

Homework Statement


See the figure. This is part of a larger problem involving electromagnetism. I understand the electromagnetism but am having trouble with the basic mechanics!

I have a block of mass M on a frictionless incline at angle phi. There is a magnetic force acting horizontally on the block. I need to find the component of the normal force that balances this out.

The Attempt at a Solution


The component of the normal force parallel to the incline is mg*cos(Pi/2-phi)=mgsin(phi). The angle between this component is phi. Therefore, the horizontal component should be mgsin(phi)cos(phi).

However, my book says this should be mgtan(phi). I do not know how they got that. Perhaps setting the component of the magnetic force parallel to the incline equal to the component of the normal force parallel to the incline we get Fcos(phi)=mgsin(phi) so F=mgtan(phi). But if I try to find the component of the normal force in the opposite direction of the magnetic force, I get F=mgsin(phi)cos(phi). What gives?

I can't see your image, but you have gravity acting || to the incline and that component you have as m*g*sinφ . Your horizontal force has a component up the incline || and opposite the m*g component, and that makes you balanced condition F - the horizontally directed F then m*g*tanφ as you have figured.

When you are looking at the forces normal to the incline then don't you have two components there, that are in balance not with each other but with the force normal to the incline? You have your m*g*cosφ and you have your F*sinφ.
 
Thank you for your reply. I see how you get mgtan(\phi). Where was I going wrong when I got mgsin(\phi)cos(\phi)?

I.e. mgcos(\phi) is at an angle \pi/2-\phi with the horizontal. So it's component in the horizontal direction should be mgcos(\phi)cos(\pi/2-\phi)=mgcos(\phi)sin(\phi). But that can't be right, since sin(\phi)cos(\phi)\neq tan(\phi) in general.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top