Solving EM Wave Emission from Cavity at T: Power per Unit Area

phystudent17
Messages
2
Reaction score
0

Homework Statement


Basically, the problem states that a cavity at temperature T is emitting EM waves isotropically in all directions (with frequency distribution of Planck's Law). If the time averaged density is <e>, find the value of d<S>/dw where w is the solid angle and the quantity is the effective poynting vector magnitude per unit solid angle. Hence I am to show the power per unit area that passes in one direction (i.e. into solid angle of 2 pi) through any plane within the cavity is dP/dA= (c/4)<e>/ Note that the unit system is Gaussian. Basically, I am stuck at the first part of the problem.


Homework Equations



Some equations that I know are <S>=c<e>, the total solid angle for a sphere is 4 pi.

The Attempt at a Solution



I have a feeling the solution is really simple but I cannot get into the physics of it. Is d<S>/dw just <S>/ 4pi= (c/4 pi)<e>? But then integrating over a solid angle of 2 pi gives me (c/2)<e> which is off by a factor of 2. And I really don't get the solid angle business. Can someone point me in the right direction? Thanks.
 
Physics news on Phys.org
"But then integrating over a solid angle of 2 pi gives me (c/2)<e> which is off by a factor of 2"

That's because you should be integrating over a solid angle of 4 pi, as you already know!
 
but now i want the power per unit area passing through one direction and that has a solid angle of 2 pi not 4 pi. the qn requires me to show that integrating over the solid angle of 2 pi gives me (c/4)<e>
 
I did misread your question, sorry about that. In any case, the relation |<\vec{S}>|=c<e> holds for plane waves propagating in a given direction. It's not a general relation.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top