Solving Proton Transfer with Harmonic Oscillator

greisen
Messages
75
Reaction score
0
Hi,

I am approximating a proton transfer from one water molecule to another. I would to have a quantum mechanical description of the proton transfer as a wavefunction. So I have approximated a "transition state" and use this as a harmonic potential. Then I get some energy values around this potential - the problem is that the best fit is still a quadratic function - so it should be harmonic but in my analytic eigenfunction I have x^2 - is it possible to use a*x^2 + b*x + c instead ?
Any help or advice appreciated.
Thanks in advance

Best regards
 
Physics news on Phys.org
greisen said:
Hi,

I am approximating a proton transfer from one water molecule to another. I would to have a quantum mechanical description of the proton transfer as a wavefunction. So I have approximated a "transition state" and use this as a harmonic potential. Then I get some energy values around this potential - the problem is that the best fit is still a quadratic function - so it should be harmonic but in my analytic eigenfunction I have x^2 - is it possible to use a*x^2 + b*x + c instead ?
Any help or advice appreciated.
Thanks in advance

Best regards

You can always reexpress a potential of the form V(x)= a x^2 + bx + c as a quadratic function the following way V(x) = a(x+ \frac{b}{2 a})^2 - \frac{ b^2}{4 a} + c

Now just shift the variable x' \equiv x - \frac{b}{2 a} and you get V(x') = a (x')^2 - \frac{ b^2}{4 a} + c Shifting th epotential by the constant piece leaves you with a harmonic potential in the new variable.

Hope this helps

Patrick
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top