Special relativity: Lorentz equations

aznkid310
Messages
106
Reaction score
1

Homework Statement



A pole vaulter holds a 16ft pole. A barn has doors at both ends, 10 ft apart. The pole-vaulter on the outside of the barn begins running toward one of the open barn doors, holding the pole in the level direction he's running. When passing through the barn, the pole fits entirely in the barn at once. According to the stationary observer in the barn, which occurs first, the front end of the pole leaving the barn first or the back end entering, and what is the time interval between these events?



Homework Equations



I realize that the 'proper length' Lo = 16ft, and L = 10 ft. From there, I can get the velocity v and the factor y_v [measure of the departure of relativistic expectations].
I can then use the lorentz transformations, but I am having trouble finding the values

The Attempt at a Solution



L = (y_v)*Lo

10 = sqrt[1-(v^2/c^2)]*Lo

Solving for v: v = 0.78c

Thus, y_v = sqrt[1-(0.78^2)] = 0.626

Since we want to know t_2 - t_1, i used:

t_2 - t_1 = (y_v)*[(v/c^2)*(x'_2 - x'_1) + (t'_2 - t'_1)]

I don't know how to find the x primes and t primes (distances and times according to pole vaulter).
 
Physics news on Phys.org
10/16=0.625

if the coordinates in one frame are (x,t)
then the coordinates in another frame are (gamma*(x-vt), gamma*(t-vx))

but only if c=1. otherwise there is another term which I don't know because I never bother with it.
 
the origin of the 2 systems cooncide at t=0
 
are you saying that i can use the time dilation formula: t = (y_v) * t'?
 
no. time and distance are both involved. there is a lass of simultaneity. just use the formula I gave you.

btw, the stationary observer sees the pole fit into the barn. its the pole vaulter that sees it differently. so the question is worded wrongly.

from the stationary observers point of view:
back end of pole enters barn (0,0)
front end of pole leaves barn (10,0)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top