Standing wave transverse motion and amplitude

AI Thread Summary
The discussion centers on calculating the amplitude of a standing wave on a vibrating guitar string, which has nodes at both ends and a length of 0.381m. The maximum transverse acceleration is given as 8600 m/s², and the maximum transverse velocity is 3.4 m/s. The user initially calculates the wavelength and attempts to find the angular frequency (ω) but struggles with the equations. Other participants suggest focusing on the midpoint of the string where the sine function equals one, allowing simplification of the equations. By substituting the known values into the derived equations, the user can solve for the amplitude.
Declan Purdy
Messages
3
Reaction score
0

Homework Statement


A guitar string is vibrating in its fundamental mode, with nodes at each end. The length of the segment of the string that is free to vibrate is 0.381m. The maximum transverse acceleration of a point at the middle of the segment is 8600 m/s and the max. transverse velocity is 3.4m/s.

What is the amplitude of the standing wave?

Homework Equations


y(x,t)=Asin(kx)sin(ωt)

The Attempt at a Solution


I calculated the wavelength of the fundamental frequency as 2L = 0.762

I then calculated k by 2π/λ = 8.246

I found the first partial derivative as
∂y(x,t)/∂t = ωAsin(kx)cos(ωt) = 3.4ms-1

Then i found the second partial derivative of y(x,t) as
2y(x,t)/∂t2 = -ω2Asin(kx)sin(ωt)Which is the same as -ω2y(x,t),
I know that y(x,t) will be the amplitide at the max acceleration, so 8600ms-2 = -ω2A
I'm not sure where to go from here as I don't know how to calculate a value for ω with the given information
 
Last edited:
Physics news on Phys.org
What is the expression for the maximum velocity?
 
∂y/∂t = ωAsin(kx)cos(ωt) = 3.4ms-1
 
Last edited:
The relevant equation you wrote is a traveling wave. The guitar string fixed at both ends exhibits standing waves.
 
Chandra Prayaga said:
The relevant equation you wrote is a traveling wave. The guitar string fixed at both ends exhibits standing waves.
Oh yes, thank you.
It is edited now but I am still at the same problem of solving for omega.
 
You are only interested in the middle of the string where sin(kx) = 1, so you can get rid of that.

They give you the max velocity and the max acceleration. The maximums occur when the trig functions = 1, so you can get rid of those. Substitute in the given values and you will have two simple equations in two unknowns. Solve algebraically.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top