Statistical physics. Density matrix

LagrangeEuler
Messages
711
Reaction score
22

Homework Statement


A system is subject to Hamiltonian ##\hat{H}=-\gamma B_z \hat{S}_z##. Write down the density matrix.[/B]

Homework Equations


For canonical ensemble
##\hat{\rho}=\frac{1}{Tr(e^{-\beta \hat{H}})}e^{-\beta \hat{H}}##

In general ##\rho=\sum_m |\psi_m\rangle \langle \psi_m|##

The Attempt at a Solution


How to know which definition of density matrix to use? Thanks.
 
Physics news on Phys.org
The density matrix (statistical operator) is, of course, not determined by just giving the Hamiltonian but by the state of the system, because the statistical operator describes the state of the system. So there must be something missing from the problem statement or it is implied to consider a system in thermal equilibrium and to use the canonical ensemble. In the latter case it's not that difficult, if (again some information missing in the problem statement!) you know what spin your particle, i.e., ##s \in \{0,1/2,1,\ldots \}##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top