A Tensor product matrices order relation

Jufa
Messages
101
Reaction score
15
TL;DR
Having that ##A \geq \pm B## how can one prove that indeed ##A^{\otimes n} \geq \pm B^{\otimes n}##
We mainly have to prove that this quantity## \bra{\varphi} A^{\otimes n } \ket{\varphi} \pm \bra{\varphi} B^{\otimes n } \ket{\varphi} ##

is greater or equal than zero for all ##\ket{\varphi}##.

Being ##\ket{\varphi}## a product state it is straightforward to demonstrate such inequality. I am struggling though to demonstrate it for a general, perhaps entangled ##\ket{\varphi}##, because of the cross products that show up.

Can someone please help me?

Many thanks in advance! :)
 
Physics news on Phys.org
Can you show that if the inequality is true for a product state that its true for a sum of product states? Specifically for a sum of orthogonal product states?
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 20 ·
Replies
20
Views
9K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K