A Tensor product matrices order relation

Jufa
Messages
101
Reaction score
15
TL;DR Summary
Having that ##A \geq \pm B## how can one prove that indeed ##A^{\otimes n} \geq \pm B^{\otimes n}##
We mainly have to prove that this quantity## \bra{\varphi} A^{\otimes n } \ket{\varphi} \pm \bra{\varphi} B^{\otimes n } \ket{\varphi} ##

is greater or equal than zero for all ##\ket{\varphi}##.

Being ##\ket{\varphi}## a product state it is straightforward to demonstrate such inequality. I am struggling though to demonstrate it for a general, perhaps entangled ##\ket{\varphi}##, because of the cross products that show up.

Can someone please help me?

Many thanks in advance! :)
 
Physics news on Phys.org
Can you show that if the inequality is true for a product state that its true for a sum of product states? Specifically for a sum of orthogonal product states?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top