A Tensor product matrices order relation

Jufa
Messages
101
Reaction score
15
TL;DR Summary
Having that ##A \geq \pm B## how can one prove that indeed ##A^{\otimes n} \geq \pm B^{\otimes n}##
We mainly have to prove that this quantity## \bra{\varphi} A^{\otimes n } \ket{\varphi} \pm \bra{\varphi} B^{\otimes n } \ket{\varphi} ##

is greater or equal than zero for all ##\ket{\varphi}##.

Being ##\ket{\varphi}## a product state it is straightforward to demonstrate such inequality. I am struggling though to demonstrate it for a general, perhaps entangled ##\ket{\varphi}##, because of the cross products that show up.

Can someone please help me?

Many thanks in advance! :)
 
Physics news on Phys.org
Can you show that if the inequality is true for a product state that its true for a sum of product states? Specifically for a sum of orthogonal product states?
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Back
Top