The expectation value for the radial part of the wavefunction of Hydrogen.

mjordan2nd
Messages
173
Reaction score
1
The wavefunction of hydrogen is given by

<br /> <br /> \psi_{nlm}(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta, \phi)<br />

If I am only given the radial part, and asked to find the expectation value of the radial part I integrate the square of the wavefunction multiplied by r cubed allowing r to range from 0 to infinity. I don't understand where the extra factor of r squared comes from? I suspect it has something to do with multiplying by a volume element, but it is unclear to me why the factor of 4 pi that would normally come with spherical integration that depends on r alone disappears. I missed this on a test, recently, and was hoping someone could explain.

Thanks.
 
Physics news on Phys.org
You're integrating in spherical coordinates so the volume element is dV=r^2sin\theta dr d\theta d\phi
 
Last edited:
The 4pi is normalized away by the spherical harmonics. You essentially already integrated over a spherical shell, and over that entire spherical shell, you should get the integral to be 1.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top