The height of a dielectric material between two coaxial pipes

Click For Summary
SUMMARY

The discussion focuses on solving a physics problem from Feynman's Lectures on Physics 2, specifically exercise 10.6, which involves calculating the height H that oil rises between two coaxial pipes when a voltage V is applied. The derived formula for H is H=(V^2)(κ-1)ε_0/[ln(b/a)ρ(b^2-a^2)g], where κ is the dielectric constant, ρ is the mass density of the oil, and g is the gravitational acceleration. Participants emphasized the importance of focusing on the height y above the oil surface and equating forces rather than relying on energy balance to arrive at the solution.

PREREQUISITES
  • Understanding of electrostatics, specifically cylindrical capacitors.
  • Familiarity with dielectric materials and their properties, including dielectric constant (κ).
  • Knowledge of gravitational forces and fluid mechanics.
  • Basic proficiency in calculus for differentiating energy equations.
NEXT STEPS
  • Study the principles of cylindrical capacitors and their electric fields.
  • Research the relationship between dielectric materials and electric field strength.
  • Learn about the conservation of energy in electrostatic systems.
  • Explore fluid dynamics principles related to buoyancy and pressure in liquids.
USEFUL FOR

Students of physics, particularly those studying electromagnetism and fluid mechanics, as well as educators looking for problem-solving strategies in electrostatics.

knowone
Messages
5
Reaction score
1

Homework Statement


This is the exercise 10.6 from Feynman lectures on Physics 2.
Two coaxial pipes of radii a and b(a<b) are lowered vertically into an oil bath. If a voltage V is applied between the pipes, show that the oil rises a height H.
Show that H=(V^2)(κ-1)ε_0/[ln(b/a)ρ(b^2-a^2)g]
where κ is the dielectric constant of the oil, ρ is the mass density of the oil, and g is the gravitational acceleration constant.

Homework Equations


the conservation law of energy: ΔWork(V=0 to V=V) = ΔU(electrostatic energy) + work on the oil ?
QV=(1/2)QV + (1/2)QV

The Attempt at a Solution


[/B]
I assumed a conductor of height L above the oil surface( L>>b), originally neutral, then charged to voltage V with charge Q.
The electric field btwn two pipes is E = Q/(L2πε_0r) and the potential difference is V=Q*ln(b/a)/(L2πε_0). C = L2πε_0/ln(b/a).

If the oil is attracted into the conductor to height y(variable), the voltage stays the same but the charge and the capacity change:
C1=2πε_0(L-y+κy)/ln(b/a), Q1=Q(L-y+κy)/L

The total work of a battery is Wb(work of battery)=Q1V-0 = (V^2)2πε_0(L-y+κy)/ln(b/a)
The electrostatic energy of the conductor is U=(1/2)Wb = (V^2)2πε_0(L-y+κy)/[2*ln(b/a)]
-(The work done by gravity) = (the work done on the oil) = -πρ(b^2-a^2)g*y = (V^2)2πε_0(L-y+κy)/[2*ln(b/a)]

I do not know what is wrong.
 
Physics news on Phys.org
First thing is to ignore L It doesn't appear in the given answer. Concentrate on the height y above the oil surface, just that section.

EDIT: disregard the rest of this post; see post 3.

Make a list of energies supplied and absorbed. The battery is obviously the source of the energy to lift the oil against gravity. What then about the change in E field stored energy before vs. after V is applied?

I haven't done this problem myself but would approach it that way. I'll try to find the time and energy (LOL) to do it later.
 
Last edited:
  • Like
Likes   Reactions: knowone
OK, forget energies and forget the battery completely (except of course that it applies a constant V to the cylindrical capacitor.)

Instead, equate the force with which the oil column is pulled upwards with the gravitational force acting on the filled oil column. That way I got the right answer. It's a pretty easy problem that way.

(Going with energies is not only messier but resulted in a tautology!).
 
  • Like
Likes   Reactions: knowone
rude man said:
First thing is to ignore L It doesn't appear in the given answer. Concentrate on the height y above the oil surface, just that section.

EDIT: disregard the rest of this post; see post 3.

Make a list of energies supplied and absorbed. The battery is obviously the source of the energy to lift the oil against gravity. What then about the change in E field stored energy before vs. after V is applied?

I haven't done this problem myself but would approach it that way. I'll try to find the time and energy (LOL) to do it later.
Without L, how can I calculate the capacity? I differentiate the electrostatic energy of the conductor to obtain electric force inside the conductor. U= (V^2)C/2 and C changes with the total length of the conductor and the height of the oil. Of course the force do not contain L.
 
knowone said:
Without L, how can I calculate the capacity? I differentiate the electrostatic energy of the conductor to obtain electric force inside the conductor. U= (V^2)C/2 and C changes with the total length of the conductor and the height of the oil. Of course the force do not contain L.
This is fine, you have seemingly distanced yourself from energy balance incl. battery energy, and are going with force balance: ∂U/∂y = mg. But I don't see the need for any L when you already have y and h? I am guessing your L is h? Anyway, proceed!
 
  • Like
Likes   Reactions: knowone

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
Replies
5
Views
3K
Replies
12
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K