Thermodynamics: turbine, steady-state, how to find the necessary mass flow?

AI Thread Summary
A small high-speed turbine operates on compressed air, delivering 100 W of work with an inlet pressure of 400 kPa and temperature of 50°C, and an exit pressure of 150 kPa and temperature of -30°C. The first law of thermodynamics for a control volume is applied, assuming steady state and adiabatic conditions, leading to the equation dW/dt = m(h_i - h_e). The challenge lies in calculating the change in enthalpy without steam tables, prompting the use of the constant pressure heat capacity for air, which is the sum of the constant volume heat capacity and the universal gas constant. Assistance is sought to find the necessary mass flow rate of air through the turbine.
eventob
Messages
32
Reaction score
0
The problem (tried my best to translate it):
A small high speed turbine is operating on compressed air. It deliveres dW/dT=100 W. At the inlet, the pressure is 400 kPa and the temperature 50*C.

At the exit, the pressure is 150 kPa and the temperature -30*C.

Neglect the velocity and assume an adiabatic process. Find the necessary mass flow of air through the turbine. My attempt at a solution:
I have derived the first law for a control volume:
dE/dt=(dQ/dt)-(dW/dt)+∑m_i (h_i+0.5v_i^2+gz_i)-∑m_e (h_e+0.5v_e^2+gz_e)

Where t is time, and m_i og m_e is rate of change of mass flow at the inlet and exit, respecitively.
Assumed steady state: dE/dt=0.
Adibatic dQ/dt=0.
Also m_e´=m_i´=m´

By neglecting kinetic and potential energy associated with gravity, i end up with:

dW/dt=m(h_i-h_e) <=> m=(dW/dt) / (h_i-h_e)

So far so good, but now I need to find the change of enthalphy. We were supposed to solve this task without the use of steam tables. I have tried to use the definition of constant volume heat capacity, but no luck so far. Any input?

Thanks in advance. :)

e: sorry, this was supposed to go in the homework section. Could a mod please move it? Thanks. :)
 
Science news on Phys.org
The constant pressure heat capacity for air is supposed to be used. This is equal to the constant volume heat capacity plus the universal gas constant.
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
I was watching a Khan Academy video on entropy called: Reconciling thermodynamic and state definitions of entropy. So in the video it says: Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles. Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total...
Back
Top