Transition Matrix for a betting game

ha9981
Messages
31
Reaction score
0
Suppose that a casino introduces a game in which a player bets $1 and can
either win $2 or lose it, both with equal chances. The game ends when the player runs out
of money, or when he wins $4.
(a) Build a transition matrix for the game, and show that it is not a regular transition
matrix.
(b) Find the long term expected payoff to the player, and explain why the game is
pro profitable (or not) for the Casino.

My Attempt:

a) P =
0.5 0.5
0.5 0.5

I don't feel this is right because there is a lot of extra information in the question that seems wasted. My attempt to incorporate game ending at $4.

P =
0.5 0.5 0
0.5 0.5 1


I can't even get to part B as I am struggling at the transition matrix, if someone could guide me to a similar example because my textbook lacks here.
 
Physics news on Phys.org
This should be a Markov process, but we could as well list all possible paths. It is always a good idea to draw a graph.
 
ha9981 said:
Suppose that a casino introduces a game in which a player bets $1 and can
either win $2 or lose it, both with equal chances. The game ends when the player runs out
of money, or when he wins $4.
(a) Build a transition matrix for the game, and show that it is not a regular transition
matrix.
(b) Find the long term expected payoff to the player, and explain why the game is
proprofitable (or not) for the Casino.

My Attempt:

a) P =
0.5 0.5
0.5 0.5

I don't feel this is right because there is a lot of extra information in the question that seems wasted. My attempt to incorporate game ending at $4.

P =
0.5 0.5 0
0.5 0.5 1I can't even get to part B as I am struggling at the transition matrix, if someone could guide me to a similar example because my textbook lacks here.
How much does the player start with? Nothing? Two dollars? Once you know that list out as the states the amounts of money the person could have after each bet, whether win or lose, then assign probabilities.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top