Trig Integral Calculus: Mastering Problem Solving Techniques

KDeep
Messages
18
Reaction score
0

Am I doing good on this problem?
 

Attachments

  • IMG_0377.jpg
    IMG_0377.jpg
    37.6 KB · Views: 444
Physics news on Phys.org
Check your 6th line.
 
supermiedos said:
Check your 6th line.

u^5 - u^7 = -u^2?
 
KDeep said:
u^5 - u^7 = -u^2?
Nvm.. its not the same thing.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top