Trigonometric functions and integrals

Any Help
Messages
79
Reaction score
2

Homework Statement


I'm searching for the integral that gives arcosu

Homework Equations


as we know : ∫u'/[1-u^2]^0.5 dx = arcsinu
derivative of arccosu = -u'/[1-u^2]^0.5 + C
derivative of arcsinu= u'/[1-u^2]^0.5

The Attempt at a Solution


when I type the -u'/[1-u^2]^0.5 on the online integral calculator it always gives me -arcsinu +C
Why it doesn't gives arccosu
is the arccosu=-arcsinu?!
and what is the integral that gives arcosu?
 
Physics news on Phys.org
Any Help said:

Homework Statement


I'm searching for the integral that gives arcosu

Homework Equations


as we know : ∫u'/[1-u^2]^0.5 dx = arcsinu
derivative of arccosu = -u'/[1-u^2]^0.5 + C
derivative of arcsinu= u'/[1-u^2]^0.5

The Attempt at a Solution


when I type the -u'/[1-u^2]^0.5 on the online integral calculator it always gives me -arcsinu +C
Why it doesn't gives arccosu
is the arccosu=-arcsinu?!
and what is the integral that gives arcosu?
cos-1u= -sin-1u+90°.
Sine and cosine functions have a phase difference of 90°.
 
cnh1995 said:
cos-1u= -sin-1u+90°.
Sine and cosine functions have a phase difference of 90°.

No, they differ by ##\pi/2## radians. It is a great mistake to mix trigonometric integrals with degree measurements; the calculus of trig functions is in radian units only!
 
  • Like
Likes cnh1995
@Any Help, please post questions about calculus in the Calculus & Beyond section, not the Precalc section. I have moved your thread.
 
Ray Vickson said:
No, they differ by π/2π/2\pi/2 radians. It is a great mistake to mix trigonometric integrals with degree measurements; the calculus of trig functions is in radian units only!
then what's the integral that gives arccos u?
 
Any Help said:
then what's the integral that gives arccos u?

There are two antiderivatives of ##1/\sqrt{1-x^2}##; they are ##\arcsin(x)+C## and ##-\arccos(x)+C##. Typically, sources like tables of integrals, or computer algebra packages, give only ONE of the two, and those seem to always be the ##\arcsin(x)## version. When you do it manually you are certainly allowed to give ##-\arccos(x) + C## as an answer; it is absolutely correct, because it is the same as ##\arcsin(x) + K## for some constant ##K## that is different from the constant ##C##.
 
  • Like
Likes Any Help and cnh1995
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top