Triple Integral and finding the average

gipc
Messages
69
Reaction score
0
Solve the Integral in cylindrical coordinates
∫∫∫ dxdydz/(sqrt( x^2 + y^2 + (h-z)^2)
B

Where B is the Ball with a Radius R around (0,0,0), and the parameter h is greater than R.

And then infer the average on that ball B with radius R of the distance opposite to the point (0,0,h).

I have these so far:
Using Cylindrical Coordinates,
∫∫∫B dV/√(x² + y² + (h-z)²)
= ∫(θ = 0 to 2π) ∫(z = 0 to R) ∫(r = -√(R² - z²) to √(R² - z²)) (r dr dz dθ) / √(r² + (h-z)²)
= 2π ∫(z = 0 to R) ∫(r = -√(R² - z²) to √(R² - z²)) r dr dz / √(r² + (h-z)²)
= 2 * 2π ∫(z = 0 to R) ∫(r = 0 to √(R² - z²)) r dr dz / √(r² + (h-z)²), by evenness
= 4π ∫(z = 0 to R) √(r² + (h - z)²) {for r = 0 to √(R² - z²)} dz
= 4π ∫(z = 0 to R) [√((R² - z²) + (h - z)²) - √(h - z)²] dz
= 4π ∫(z = 0 to R) [√((R² - z²) + (h - z)²) - (h - z)] dz, since h > R > r
= 4π ∫(z = 0 to R) [√(R² + h² - 2hz) - h + z] dz
= 4π [(-1/(3h)) (R² + h² - 2hz)^(3/2) - hz + z²/2] {for z = 0 to R}
= 4π {[(-1/(3h)) (R² + h² - 2hR)^(3/2) - hR + R²/2] - (-1/(3h)) (R² + h²)^(3/2)}
= 4π [(-1/(3h)) (h - R)³ - hR + R²/2 + (1/(3h)) (R² + h²)^(3/2)].

Now, is that solution correct? Is there a way so simplify things? And from there, how do I find the average?
 
Physics news on Phys.org
Isn't \sqrt{x^2+y^2+z^2} the distance from the origin to the point (x,y,z)?
So \sqrt{x^2+y^2+(h-z)^2} would be the distance from (x,y,z) to (0,0,h)?
So your integral is just summing all these distances ... how do you find an average value by integration?

Same kind of problem, slightly different way:
http://www.mathpages.com/home/kmath324/kmath324.htm
 
gipc said:
Solve the Integral in cylindrical coordinates
∫∫∫ dxdydz/(sqrt( x^2 + y^2 + (h-z)^2)
B

Where B is the Ball with a Radius R around (0,0,0), and the parameter h is greater than R.

And then infer the average on that ball B with radius R of the distance opposite to the point (0,0,h).

I have these so far:
Using Cylindrical Coordinates,
∫∫∫B dV/√(x² + y² + (h-z)²)
= ∫(θ = 0 to 2π) ∫(z = 0 to R) ∫(r = -√(R² - z²) to √(R² - z²)) (r dr dz dθ) / √(r² + (h-z)²)
= 2π ∫(z = 0 to R) ∫(r = -√(R² - z²) to √(R² - z²)) r dr dz / √(r² + (h-z)²) ...

Now, is that solution correct? Is there a way so simplify things? And from there, how do I find the average?

It looks like you have only integrated over the top half of the Ball.

The limits on z should go from -R to R .
 
I think the final answer is still correct, no?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top