Trying to decipher transient flow results

  • Thread starter Thread starter josh89
  • Start date Start date
  • Tags Tags
    Flow Transient
AI Thread Summary
The discussion centers on a student’s honours research project in Active Flow Control aimed at reducing drag on trucks using oscillating jets of air in a wind tunnel setup. The student is facing an issue where static pressure readings exceed total pressure readings across multiple measurement positions, leading to inverted dynamic pressure calculations. Suggestions from the forum include potential issues with flow angles relative to the probes, possible kinks in the pressure lines, and the limitations of the pressure transducers due to long tubing affecting measurement accuracy. Additionally, the importance of flush mounting transducers for unsteady pressure measurements is emphasized, along with the potential to determine the transfer function of the tubing to correct distorted measurements. The conversation highlights the complexities of accurately measuring transient flow in experimental setups.
josh89
Messages
2
Reaction score
0
Please Help! Trying to decipher transient flow results

Hey guys,

I'm currently studying a Bachelor of Aerospace Engineering and doing my honours level research project in a field called Active Flow Control.

A brief intro to what the project involves:
The motivation of the project is to reduce the drag on trucks. Specifically I'll be putting a model into a wind tunnel and through two slots at the back there will be oscillating jets of air created using an internally mounted subwoofer.
The pulsed air will add momentum to the wake region, delaying the onset of shed vortices resulting from flow separation over the back of the model and consequently raising the base pressure (pressure on the back surface). Pressure drag is the dominant mode of drag for cruising trucks.

Where I'm at at the moment is I've built a prototype and I'm trying to find a way of accurately measuring the velocity of the air that's entering/leaving the slots. I've produced two 'rakes' of pitot static like tubes that have been attached to each slot.

Here are some photos so that you can get a better idea of the setup:
Prototype model with the back detached: http://tinypic.com/r/35l4ww3/7"
Here you can clearly see the top slot: http://tinypic.com/r/2rhxx94/7"
Inside of the pitot static 'rake': http://tinypic.com/r/vmru55/7"
The complete set up: http://tinypic.com/r/2hnny8h/7"

The rakes are mounted onto each slot and are connected via nylon tubing to a digital pressure measurement system. the metal tubes that face into the flow measure the total pressure and the ones that sit flush on the surface measure the static pressure. By subtracting the static pressure results from the total pressure results I hope to get the dynamic pressure, and hence the velocity.

So here's my problem: I'm getting static pressure that's bigger than the total pressure for every position along the both rakes (7 positions per rake, each position has a channel for total and a channel for static, so 28 channels in total).

As an example I've plotted the results of the middle position of the top slot here: http://tinypic.com/r/2jfetfa/7"

As you can see the static pressure is greater than the total pressure and as a result the dynamic pressure (total-static) is inverted. I cannot understand how this is physically possible and so I've come to the conclusion that something's wrong with the experiment, but I can't work out what.

I've ruled out a few things so far. The hoses are definitely connected the the correct channels, the formula I've used in excel references the correct cells and all the channels were zeroed before every experiment.

If anyone has any ideas or suggestions I'd be very happy to hear them.

Thanks in advance!
 
Last edited by a moderator:
Physics news on Phys.org


P.s. If anyone knows of any other appropriate forums where I could post this thread that would be greatly appreciated as well.
 


Maybe the flow is not actually parallel to the surface the probes are mounted on. If the flow was at an angle relative to that surface than the flush mounted probe would read a higher pressure than static and the total pressure probe would read a lower pressure than the true total pressure.

Is it possible that when you bent the total pressure probes you kinked the lines?

What are all of your transducers referenced to?

I also have another comment. This setup won't be able to measure the velocity in both directions because the total pressure probes can only measure the total pressure from one direction. When the flow is in the opposite direction they total pressure probes will actually be measuring a static pressure and the static pressure taps will be measuring an incorrect static pressure because they are in the wake of the total pressure probes.
 


The other thing to keep in mind is that the frequency response of a pressure transducer with a long tube connecting it to the flow is very low. Depending on your specific geometry, you may simply be cutting off the peaks because the long tubes you are using are damping out your response.
 


Great point boneh3ad.

When making unsteady pressure measurements you ideally want the transducer flush mounted to the surface. When this isn't an option then you want to minimize the length of the tubing and keep it as straight as possible. Its a very interesting problem though. Depending on the tube geometry and the frequency of the fluctuations, the magnitude of the measured pressure can be increased or decreased and the phase is shifted from the actual pressure. If the tubing is not to long it is possible to determine the transfer function of the tubing and then use the distorted pressure measurements and this transfer function to reconstruct the actual pressure at the probe. Determining the transfer function can be done experimentally or theoretically in some cases.
 
Due to the constant never ending supply of "cool stuff" happening in Aerospace these days I'm creating this thread to consolidate posts every time something new comes along. Please feel free to add random information if its relevant. So to start things off here is the SpaceX Dragon launch coming up shortly, I'll be following up afterwards to see how it all goes. :smile: https://blogs.nasa.gov/spacex/

Similar threads

Replies
31
Views
4K
Replies
45
Views
5K
Replies
1
Views
2K
Replies
35
Views
7K
Replies
8
Views
3K
Back
Top