@supermiedos: After applying the double angle formula, you are wanting to show$$
\int_0^{\frac {\pi}2}\sin^m(2x)~dx=\int_0^{\frac {\pi}2}\cos^m(x)~dx$$
Let ##u=2x## in the left integral, we get$$
\int_0^{\frac {\pi}2}\sin^m(2x)~dx=\frac 1 2 \int_0^{\pi}\sin^m(u)~du$$Since the sine function is symmetric about ##\frac{\pi} 2## on the interval ##[0,\pi]##, we have$$
\int_0^{\pi}\sin^m(u)~du = 2\int_0^{\frac{\pi} 2}\sin^m(u)~du$$Putting this together gives$$
\int_0^{\frac {\pi}2}\sin^m(2x)~dx=\int_0^{\frac{\pi} 2}\sin^m(u)~du=\int_0^{\frac{\pi} 2}\sin^m(x)~dx$$
And, finally, by symmetry$$
\int_0^{\frac{\pi} 2}\sin^m(x)~dx=\int_0^{\frac {\pi}2}\cos^m(x)~dx$$
That should do it unless I've overlooked something. (I know, I'm taking a chance by assuming this isn't actually a homework problem).