How Do You Solve Tension and Acceleration in a Two-Pulley System?

  • Thread starter Thread starter astronomerc
  • Start date Start date
  • Tags Tags
    Pulleys Two masses
AI Thread Summary
The discussion focuses on solving for tension and acceleration in a two-pulley system involving two blocks. The user correctly identifies that the tension is consistent throughout the rope and sets up equations based on free body diagrams for each mass. A key point raised is the assumption of friction, which is not mentioned in the problem statement, leading to confusion in calculations. The user successfully derives an expression for acceleration but struggles with the variable for friction, denoted as 'u.' The consensus emphasizes that unless specified, all surfaces should be assumed frictionless to simplify the problem.
astronomerc
Messages
3
Reaction score
0

Homework Statement



Two blocks are connected by a rope that passes around two pulleys as indicated in the figure. (Attached)

a. Determine the tension in the rope.
b. Determine the acceleration of each block (Hint: The two blocks do not have the same acceleration).

The Attempt at a Solution



I call m1 the left mass and m2 the right.
I think the Tension is the same for the whole rope.
My m1 free body has normal up (+y) weight down, kinetic friction left, Tension right (+x)
My m2 free body is 2T up (-y) and weight down.
I think a1=2a2

For m1x Fx=max
T-f=m1a
T=2ma2+um1g

For m2:
m2g-2T=m2a2
T=(m2g-m2a2)/2

I put my two equations together to eliminate T
4m1a2+2um1g=m2g-m2a2

I solved for a2
a2=(m2g-2um1g)/(4m1+m2)

I plugged what I had for a2 into the original to solve for u:

I ended up with m2g-2um1g-m2g=2um1g
everything cancels to -u=u

Can someone please point out my flaw, be it in my algebra or my logic?
 

Attachments

Physics news on Phys.org
astronomerc said:
I solved for a2
a2=(m2g-2um1g)/(4m1+m2)
Everything up to here looks fine.

I plugged what I had for a2 into the original to solve for u:

I ended up with m2g-2um1g-m2g=2um1g
But I don't understand what you are trying to do here. I presume u is given, just like the two masses.

You found a2, now find a1 and T.
 
u is not given. The problem in it's entirety is posted... I am struggling to find u, but think I can do the rest from there.

I thought about assuming u was zero, but that doesn't seem right either.
 
astronomerc said:
u is not given. The problem in it's entirety is posted... I am struggling to find u, but think I can do the rest from there.

I thought about assuming u was zero, but that doesn't seem right either.
It sounds like you are just assuming that there's friction. I see no mention of it in the problem statement that you gave.

In general, unless the problem explicitly mentions friction, assume that all surfaces are frictionless. (If not, there's not enough information to solve the problem.)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top