Two stacked objects sliding down inclined plane.

AI Thread Summary
A 60kg boy rides down a 19º icy slope on a 2.6kg scale, with no friction between the scale and the hill. The discussion centers on calculating the static friction force exerted by the scale on the boy, which is determined to be zero due to the lack of relative motion between them. The boy and the scale slide down together, and the forces acting on the boy include gravity, inertia, normal force, and static friction. The participants clarify that the scale is not an inertial frame of reference, leading to the conclusion that static friction is indeed zero. The final consensus is that the initial misunderstanding about the interaction between the objects was incorrect.
michaelwiggin
Messages
2
Reaction score
0

Homework Statement


"A 60kg boy rides down an icy hill of 19º slope while standing on a 2.6kg flat-bottomed bathroom scale. Assume there is no frictional force between the bottom of the scale and the hill. The static friction force the scale exerts on the boy is ____.


Homework Equations


... F = ma
Ff=\muFn
Not sure what else... really its the theory of it that's getting me.


The Attempt at a Solution


Well, my understanding is that if there was no friction between the boy and the top of the scale, then while the scale was sliding down the hill, the boy would be sliding downward not only with respect to the hill (as a result of the acceleration of the scale) but also with respect to the scale. But because it asks for the static friction of the scale on the boy, this must mean he's not moving, and thus when determining the friction we can use the usual Ff=mgsin\theta equation.


Thus 60kg(9.8m/s2)(sin19) = 191.4

Any mistakes that you all notice?

Thanks!
-Michael
 
Physics news on Phys.org
Both the boy and the scale slide downhill together. What is the acceleration of the boy? What are the forces acting on the boy?

ehild
 
>>Well, my understanding is that if there was no friction between the boy and the top of the scale
no, there is no frictional force between the scale and the ice hill

>>this must mean he's not moving
yes, relative the the scale he is not moving
 
The scale is not an inertial frame of reference as it is accelerating with respect to the stationary ground. If you stick to the scale as frame of reference, there is a force of inertia -ma acting on each body of mass m where a is the acceleration of the scale along the slope. You have gravity, the force of inertia, normal force and static friction acting on the boy. The sum of these forces must give zero.

ehild
 
You're correct ehild, my initial thinking was completely foolish. Somehow I believed that if frictionless plates (any objects I suppose) were stacked atop each other upon an inclined plane, than *each* accelerated with respect to the surface that they were placed on. That's absurd, of course, because if 100 plates were stacked then the top one would be accelerating at a rate of 981 m/s^2.*facepalm*The force of static friction is 0. Thanks fellas.
-Michael
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top