"Uncertainity Product for Particle in 1-D Box

AI Thread Summary
The discussion revolves around calculating the uncertainty product (Δx)(Δp) for a particle in a one-dimensional box with rigid boundaries. The uncertainty principle states that (Δx)(Δp) must be greater than or equal to ħ/2. The participant calculates the momentum as p = πħ/L and initially assumes the positional uncertainty Δx to be L. After further analysis, they realize the need to compute the uncertainty in momentum (Δp) correctly, leading to the conclusion that the uncertainty product should yield h/√3, which is the correct answer. The conversation emphasizes the importance of accurately determining both Δx and Δp to satisfy the uncertainty principle.
Sushmita
Messages
8
Reaction score
0

Homework Statement


For the ground state of a particle moving freely in a one-dimensional box 0≤x≤L with rigid reflecting end points, the uncertainity product (Δx)(Δp) is
(A) h/2
(B) h√2
(C) >h/2
(D) h/√3

Homework Equations


The uncertainity principle says that -
(Δx)(Δp) ≥ ħ/2
Ground state energy in a one dimensional box of size L is E = π2ħ2/(2mL2)

The Attempt at a Solution


The particle will be localised in the resion between 0 and L. So the positional uncertainity is L
(Δx) =L

Particle is in the ground state
E= π2ħ2/(2mL2)
p2/(2m) = π2ħ2/(2mL2)
From here I have calculated the momentum ( p= πħ/L) of the particle but I cannot find the uncertainity in position. Can you give me a direction.
 
Physics news on Phys.org
Sushmita said:
From here I have calculated the momentum ( p= πħ/L) of the particle but I cannot find the uncertainity in position. Can you give me a direction.
You really need to find Δp. How would you do that?
As for the uncertainty in position, you just stated it is L.
Sushmita said:
The particle will be localised in the resion between 0 and L. So the positional uncertainity is L
 
Last edited:
I think you mean the uncertainty in momentum. I"m a little rusty in QM but I believe what you just calculated is the expectation value of p22, <p2>. Momentum is not a single number (which would violate the uncertainty principle).

I believe the average value of p is 0, so the variance in p (the square of Δp) is <p2> - <p>2 = <p2>. So the expression you gave for p, the square root of the variance, is actually the momentum uncertainty you're looking for.
 
RPinPA said:
I think you mean the uncertainty in momentum. I"m a little rusty in QM but I believe what you just calculated is the expectation value of p22, <p2>. Momentum is not a single number (which would violate the uncertainty principle).

I believe the average value of p is 0, so the variance in p (the square of Δp) is <p2> - <p>2 = <p2>. So the expression you gave for p, the square root of the variance, is actually the momentum uncertainty you're looking for.

Oh yeah. I was totally missing this out. I tried the whole problem by calculating Δp from √(<p2> - <p>2)
I am getting uncertainity in momentum too now which is Δp = πħ/L.
So now (Δx)(Δp) = L × πħ/L = πħ = π× (h/2π) = h/2.
But this is not the answer.
Answer is (d) h/√3
 
kuruman said:
You really need to find Δp. How would you do that?
As for the uncertainty in position, you just stated it is L.
I typed it wrong. I meant uncertainity in momentum.
 
Sushmita said:
I tried the whole problem by calculating Δp from √(<p2> - <p>2)
Wouldn't you need to calculate Δx in a similar manner? However, when I calculate Δx this way, I still don't get h/√3 for ΔxΔp. But I could be slipping up in the calculation. I agree with your result that Δp = πħ/L = h/(2L).
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top