Understanding derivation of -du/dx = F

  • Thread starter Thread starter hsbhsb
  • Start date Start date
  • Tags Tags
    Derivation
AI Thread Summary
The discussion focuses on deriving the relationship F = -du/dx, where U represents potential energy. Participants clarify the distinction between ΔU and dU, emphasizing that ΔU signifies a real change in potential energy, while dU refers to an infinitesimal change. The confusion arises from the notation and the interpretation of derivatives, particularly regarding the integration of force over a distance. It is concluded that taking the derivative of ΔU yields insights into average force over a range, rather than instantaneous force. Ultimately, the relationship is affirmed with the understanding that the negative sign is crucial in the context of work done against a force.
hsbhsb
Messages
6
Reaction score
0

Homework Statement



Where U is potential energy, show that F = -du/dx

Homework Equations



ΔU = U(x) - U(x_0)

$$ΔU = U(x) - U(x_0) = \int_{x_0}^{x}Fdx \qquad (1)$$

The Attempt at a Solution


[/B]
I am confused why
$$\frac{d}{dx}ΔU = \frac{du}{dx} \qquad (2)$$

Doesn't
$$ΔU = du \qquad (3)$$

I recognize that (3) is simple misunderstanding of calculus but for some reason I can't make sense of why it isn't true in this case.
 
Physics news on Phys.org
hsbhsb said:
I am confused why
$$\frac{d}{dx}ΔU = \frac{du}{dx}$$
I'm a little confused with the notation. Is ##u## the same as ##U##?

Note that ##\frac{d}{dx}ΔU = \frac{d}{dx} \left[U(x) - U(x_0) \right]##.

Simplify this.
Hint: What is ##\frac{d}{dx} U(x_0)##?

Doesn't
$$ΔU = du $$

I recognize that (3) is simple misunderstanding of calculus but for some reason I can't make sense of why it isn't true in this case.
Why do you think it is true in this case?
 
TSny said:
Is ##u## the same as ##U##?
Yes it is meant to, my mistake for lack of clarity. From now on I will use ##dU## instead of ##du## to represent the derivative of ##U##
TSny said:
Hint: What is ##\frac{d}{dx}U(x_0)##
Does it ##=F+dU/dx##?

TSny said:
Why do you think it is true in this case?
Ok, I can see why ##ΔU \neq dU## in this case. After all, ##ΔU## represents a real change in potential, not an infinitesimally small one. But I am still having trouble understanding this algebraically and intuitively. How can you take the derivative of ##ΔU##? In a situation where all potential energy is provided by gravity, ##ΔU## does not represent a single point where gravity has a single instantaneous force, like ##U(x)## and ##U(x_0)## do. It is rather, a range. Does taking the derivative of ##ΔU## then yield an average force over that range?I think my grasp of Leibniz notation is poor.
 
You have the relation $$ΔU = U(x) - U(x_0) = \int_{x_0}^{x}Fdx $$ I believe there should be a negative sign in this relation, so that it should read $$ΔU = U(x) - U(x_0) = - \int_{x_0}^{x}Fdx $$ Think of ##x_0## as having a fixed value; but consider ##x## to be a variable. So, ##U(x_0)## is just some number (i.e., a constant), but ##U(x)## is a function of the variable ##x##.

Use rules of calculus to simplify ##\frac{d}{dx}ΔU = \frac{d}{dx}\left[ U(x) - U(x_0) \right] = -\frac{d}{dx}\int_{x_0}^{x}Fdx##
 
  • Like
Likes hsbhsb
I get it! Thank you :)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top