Understanding Water Flow Dynamics in a Bernoulli's Pipe

AI Thread Summary
The discussion focuses on the relationship between water height in a Bernoulli's pipe and the speed of water exiting through a side hole. The experiment demonstrated that as the water height increases, the speed of the water emerging from the hole also increases. This phenomenon is attributed to the conversion of potential energy into kinetic energy, maintaining energy conservation principles. The participant confirmed their understanding by referencing Bernoulli's equation, kinematics, and the equation of continuity. Overall, the correlation between water height and exit speed is explained through the principles of fluid dynamics.
tucky
Messages
30
Reaction score
0
Hi everyone….I have a new question. I am writing a lab write-up and I am kind of confused about a concept. In this lab I studied the even flow of water by analyzing the flow of water through a Bernoulli’s pipe. The pipe was set up in a way that it was vertical, open at the top (where a hose rested, which allowed water in) and at the side of the pipe a small hole….where water was projected out. I allowed the water to flow through the pipe in a condition of dynamic equilibrium. In this state, the rate of the flow of water into the top of the pipe equaled the rate of the flow of water out of the side of the pipe. From my measurements, I was able to determine the speed of the water emerging out of the pipe through the hole by using three different equations to verify my results. These equations where: kinematics equation (projectile motion), Bernoulli’s equation, and the equation of continuity (R=Av).

My question is….there was a correlation between the speed and the height of the water in the pipe. The higher the water in the pipe the faster the speed of the water coming out of the hole. Does anyone know why that is the case.

Is it because water is entering the pipe at a faster speed, therefore the water coming out of the pipe at a faster speed. Or, is it because there is more water flow entering the pipe, therefore more of a flow coming out of the side hole?
 
Physics news on Phys.org
I believe it's because the more water in the tank, the more potential energy it has. Therefore, for energy to remain constant, the potential energy (which is greater when water is higher) must be converted into kinetic energy with no loss, which will increase the velocity at which it flows from the hole.

I believe this is the reason but we just covered this subject a week ago in my class so I could be all wrong. Hope it helps.

-Edge
 
Thanks...that make since to me.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top