Use polar coordinates to find the limit

Faka
Messages
25
Reaction score
0
Hi!
Is there somebody, who can help me with this exercise:
"Use polar coordinates to find the limit. [If (r, θ ) are polar coordinates of the point (x,y) with r ≥ 0, note that r --> 0+ as (x,y) --> (0,0)]
 

Attachments

  • Limit.jpg
    Limit.jpg
    2.6 KB · Views: 547
Physics news on Phys.org
What steps have you made so far?
 
I've done this so far. I do not know how to determine what the limit is.
 

Attachments

  • Limit 2.jpg
    Limit 2.jpg
    7.2 KB · Views: 966
Looks like a continuous function of r to be, what are the limits of continuous functions?
 
what do you mean exactly?
 
I hope this is right :smile:
 

Attachments

  • Limit 3.jpg
    Limit 3.jpg
    8.6 KB · Views: 1,245
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top