yungman
- 5,741
- 294
I want to verify the the value of ##x_0## and ##y_0## of the given integral according to the formula of Mean Value of Harmonic function
\frac{1}{2\pi}\int_0^{2\pi} \cos(1+\cos t)\cosh(2+\sin t)\;dtMean Value of Harmonic function on a disk ##\Omega## given:
u(x_0,y_0)=\frac {1}{2\pi}\int_{\Omega}u[(x-x_0),(y-y_0)] d\Omega
\Rightarrow\;u[(x-x_0),(y-y_0)]=\cos(1+\cos t)\cosh(2+\sin t)
\Rightarrow\;(x-x_0)=1+\cos t,\;(y-y_0)=2+\sin t
Using Polar coordinates, ##x=r\cos t,\;y=r\sin t## where ##r=1## in this case.
(x-x_0)=1+\cos t\;\Rightarrow\; x_0=-1\;\hbox{ and }\;(y-y_0)=2+\sin t\;\Rightarrow\;y_0=-2
Am I correct?
Thanks
\frac{1}{2\pi}\int_0^{2\pi} \cos(1+\cos t)\cosh(2+\sin t)\;dtMean Value of Harmonic function on a disk ##\Omega## given:
u(x_0,y_0)=\frac {1}{2\pi}\int_{\Omega}u[(x-x_0),(y-y_0)] d\Omega
\Rightarrow\;u[(x-x_0),(y-y_0)]=\cos(1+\cos t)\cosh(2+\sin t)
\Rightarrow\;(x-x_0)=1+\cos t,\;(y-y_0)=2+\sin t
Using Polar coordinates, ##x=r\cos t,\;y=r\sin t## where ##r=1## in this case.
(x-x_0)=1+\cos t\;\Rightarrow\; x_0=-1\;\hbox{ and }\;(y-y_0)=2+\sin t\;\Rightarrow\;y_0=-2
Am I correct?
Thanks
Last edited: