Verify the equation of integration

  • Thread starter Thread starter yungman
  • Start date Start date
  • Tags Tags
    Integration
yungman
Messages
5,741
Reaction score
294
I want to verify the the value of ##x_0## and ##y_0## of the given integral according to the formula of Mean Value of Harmonic function
\frac{1}{2\pi}\int_0^{2\pi} \cos(1+\cos t)\cosh(2+\sin t)\;dtMean Value of Harmonic function on a disk ##\Omega## given:
u(x_0,y_0)=\frac {1}{2\pi}\int_{\Omega}u[(x-x_0),(y-y_0)] d\Omega
\Rightarrow\;u[(x-x_0),(y-y_0)]=\cos(1+\cos t)\cosh(2+\sin t)
\Rightarrow\;(x-x_0)=1+\cos t,\;(y-y_0)=2+\sin t
Using Polar coordinates, ##x=r\cos t,\;y=r\sin t## where ##r=1## in this case.
(x-x_0)=1+\cos t\;\Rightarrow\; x_0=-1\;\hbox{ and }\;(y-y_0)=2+\sin t\;\Rightarrow\;y_0=-2

Am I correct?

Thanks
 
Last edited:
Physics news on Phys.org
I don't know this subject but the smallest |x - x_0| is when t = ##π \over 2##, then x = x_0, so x_0 = -1, x = - cos(t). And for t = 3/4 π, |y - y_0| = 1 is the smallest, so I think, when y = -1, y - y_0 = 1, so y_0 = -2, y = sin(t). So I agree with your calculations. x - x_0 is a sum of two terms, one independent of t and one dependent, and the same goes for y - y_0, so I think this must be right.
 
  • Like
Likes 1 person
Thanks, it's a strange question.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top