Volume Integral for Vector Field in Spherical Coordinates

jmz34
Messages
26
Reaction score
0

Homework Statement


I'm stuck on the following vector integral

Q(x)=INT[(p(y)/|x-y|)(dy)^3

For a sphere of uniform p (so it is not a function of y in this case). Where x is the position vector of a point lying outside the sphere and y is the position vector of a point lying inside the sphere.

Homework Equations


The Attempt at a Solution



I attempted this by taking advantage of the symmetry and picking x to lie along the z axis. I then attempted to integrate it in spherical polar coordinates and wrote the components of y in terms of theta and phi (the latter being the azimuthal angle). I wrote the volume element in spherical polars ignoring the vector notation for now. But after doing all this I get to an expression:

Q=2pi*p INT[(r^2*sin^2(theta))/(|x|^2-2|x|rcos(theta)+r^2)^1/2]drd(theta)

Which seem's like a very difficult integral to me.

Thanks in advance for your help.
 
Physics news on Phys.org
That's NOT really a "vector" problem, because the length of a vector is a scalar. Taking your fixed vector, \vec{x}, outside the sphere, to be <x_0, y_0, z_0>, then your integration is
\int\int\int \frac{p}{\sqrt{(x-x_0)^2+ (y- y_0)^2+ (z- z_0)^2}}dxdydz

By the way, if you read the forum guidelines as you should have, then you know that "bumping" a thread may get you banned.
 
If I attempt to do this in Cartesian coordinates the limits are:

Zmin(max)= -(+)R
Ymin(max) = -(+)SQRT(R^2-z^2)
Xmin(max) = -(+)SQRT(R^2-y^2-z^2)

Maybe I'm not seeing something obvious but the integral still seems difficult to me.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top