- #1
sean882
- 10
- 0
First off, this is not a homework question nor assignment. I'm working on building a solar shower to mount on my car out of PVC, and don't feel like pumping large volumes of air with a bike pump. I'm looking at a portable air pump, or compressed gas in a tank with a regulator (and blow off valve).
I'm posting here rather than the projects section as my question is a direct use of the ideal gas law; I'm not looking for critiques on the design itself.
Goal: How many gallons, at 30psi and 70°F, would a 20oz CO2 tank (assume properly filled with 20oz of gas) expand to fill? How many times could a 5 gallon tank be filled at 30psi from the 20oz tank?
Question: I believe I figured out the volume at STP correctly (1ATM of pressure, 0°C). When I relate that to my desired conditions, I used PV/T = P2V2/T2. When relating atmospheric pressure to gage pressure (30psi, 2.04 ATM), can I simply add 1 ATM to the desired gage pressure, making my P2 value 3.04 ATM? See starred (in margin) line in my work.
Work and attempt is attached. Thanks for your help and review! It's been about 10 years since I did this in school, and haven't really had to apply it between then and now.
-Sean
I'm posting here rather than the projects section as my question is a direct use of the ideal gas law; I'm not looking for critiques on the design itself.
Goal: How many gallons, at 30psi and 70°F, would a 20oz CO2 tank (assume properly filled with 20oz of gas) expand to fill? How many times could a 5 gallon tank be filled at 30psi from the 20oz tank?
Question: I believe I figured out the volume at STP correctly (1ATM of pressure, 0°C). When I relate that to my desired conditions, I used PV/T = P2V2/T2. When relating atmospheric pressure to gage pressure (30psi, 2.04 ATM), can I simply add 1 ATM to the desired gage pressure, making my P2 value 3.04 ATM? See starred (in margin) line in my work.
Work and attempt is attached. Thanks for your help and review! It's been about 10 years since I did this in school, and haven't really had to apply it between then and now.
-Sean