Wavepacket Problem: Writing |psi(x,t)|^2

  • Thread starter Thread starter trash057
  • Start date Start date
  • Tags Tags
    Wavepacket
trash057
Messages
3
Reaction score
0

Homework Statement



A wavepacket, psi(x,t), can be expressed as a linear combination of eigenstates. Assuming that only 2 eigenstates, phi0(x) and phi1(x), contribute to the linear combination write down the expression for |psi(x,t)|^2.

Homework Equations



[Boltzmann's constant = 1.38 x10^23 J /K, Planck's constant h = 6.626 x10 ^-34 J s,
Gas constant R = 8.314 J K /mol]

The Attempt at a Solution



I need help with how to start solving this problem.
 
Physics news on Phys.org
This is just an educated guess, but I'd say something like:
\psi = a_0 \psi_0 + a_1 \psi_1
So:
\int \psi \psi^{*} d^3r = \int (a_0 \psi_0 + a_1 \psi_1)(a^{*}_0 \psi^{*}_0 + a^{*}_1 \psi^{*}_1) d^3r
Now all you need to do is expand the RHS and see what you get (the integral is over all space, so what does that tell you about what the integral must equal?). If I were you I would also assume that the orginal wavefunctions (psi0 and psi1) are normalised, and that the constants a0 and a1 have no imaginary component.

That's what I would do for this question anyway, but I'm definitely no expert on the subject. lol.
 
ppyadof said:
This is just an educated guess, but I'd say something like:
\psi = a_0 \psi_0 + a_1 \psi_1
So:
\int \psi \psi^{*} d^3r = \int (a_0 \psi_0 + a_1 \psi_1)(a^{*}_0 \psi^{*}_0 + a^{*}_1 \psi^{*}_1) d^3r
Now all you need to do is expand the RHS and see what you get (the integral is over all space, so what does that tell you about what the integral must equal?).

The integral must equal 1. But do I need to expand the RHS? It just says to write the expression not to evaluate the expression.
 
trash057 said:
The integral must equal 1. But do I need to expand the RHS? It just says to write the expression not to evaluate the expression.

oh yeah, my bad.
 
Hey, no problem. Thanks for your help. I'm not sure how to expand this. I can handle numbers but when symbols are used, I start to have trouble. I'm guessing there will be four results, two zeroes and two ones. The ones being psi1 x psi1*, and psi0 x psi0*, but I'm not sure how to expand this and get those results.
 
Unless I made a mistake, you should end up with something like:
|\psi|^2 = |a_0 \psi_0|^2 + |a_1 \psi_1|^2 + a_0a^{*}_1\psi_0\psi^{*}_1 + a_1a^{*}_0\psi_1\psi^{*}_0

Obviously the normalisation constants of the first two terms of that expression are going to be real. You can prove that by writing the normalisation constants as a complex exponential a_0 = r_0e^{i\theta_0}. If you do that with a1 aswell, then you could simplify the other terms involving a1*a0 and a0*a1.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top