What am I doing wrong? (D.E.)

Beez

I have solved two Differential Equations; my answers are very similar to the provided general answers, but I just cannot get to them. Would someone tell me what I was doing wrong in my process?
1.
[x^2-2y^2]dx + xy dy = 0
xy dy = [2y^2 - x^2]dx
dy/dx = 2y/x - x/y
dy/dx - 2/xy = -x(y^-1)
Multiply by y
y(dy/dx) - (2/x) y^2 = -x
Let v= y^2
Then
dv/dx - 4 (x^-1) V = -2x
Since p(x) = -4/x, e ^integrate -(x) = x^-4
Multiply by x^-4
we have d (x^-4 v) /dy = -2x * x^-4 = -2(x^-3)
Integrate -2(x^-3)
we have x^-2 + C
Hence x^-4 * v = x^-2 + C
since v=y^2,
x^4*y^2 = x^-2 + C
y^2 = x^2 + C(x^4)
y^2-x^2 = C(x^4)
x^4 = C^-1 (y^2 - x^2)
But the general answer is x^4 = C(y^2 - x^2). What did I do wrong?

2. y dx + [x^2 - x] dy = 0
y dx = [x - x^2] dy
dx/dy = x/y - x^2/y
dx/dy - x/y = -(x^2/y)
Multiply by x^-2
x^-2 (dx/dy) - y^-1 * x^-1 = - (y^-1)
Let v = x^-1 then dv/dx = -(x^-2)(dx/dy)
then dx/dy + y^-1*v = y^-1
Then p(y) = y^-1
Calculate e^integrate p(y) we have y
so multipl by y
y (dv/dy) = y* y^-1* v = y^-1 * y
d (y*v)/dy = 1
integrate 1 and we have
y*v = y + C
since v = x^-1
y*x^-1 = y + C
y = yx + Cx
y-yx = Cx
y(1-x) = Cx But the general answer is y(x+1) = Cx

Please trust me I tried everything I could think of to fix the problems, but I couldn't. Every time I redo the problems, I got the same answers. With my knowledge of differential equation (I have just started 2 weeks ago), I am out of ideas).

I also have posted a question regarding different problem which I could not solve. I would appreciate it if you take a look at that question and instruct me how I should solve them (some people tried to help me but I still cannot get it). Right now I don't know either how to obtain IF from f(xy)ydx + f(xy)x dy = 0 equations nor change the form to dy/dx + p(x)y = c
Thank you.

Related Introductory Physics Homework Help News on Phys.org

HMS

Beez said:
dy/dx = 2y/x - x/y
dy/dx - 2/xy = -x(y^-1)
Agreed, you have taken the term 2y/x to the left, but why did it become 2/xy? May be you can start correcting from here. Hope that helps.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving