planck42
- 82
- 0
Homework Statement
{\int}{\int}{\int}ydV over the region E, where E is bounded by x=0, y=0, z=0, and 2x+2y+z=4
Homework Equations
n/a
The Attempt at a Solution
Assuming that x and y must both be positive, which the boundary conditions seem to require, then the most either one can be is 2, so I have the bounds for x and y being from 0 to 2. Then for z, I guessed that 4-2x-2y is above the xy-plane(webMathematica's Three-Dimensional Visualizer doesn't make the picture any clearer), so the integration looks like so
{\int_0^2}{\int_0^2}{\int_0^{4-2x-2y}}ydzdxdy, which becomes
{\int_0^2}{\int_0^2}4y-2xy-2y^{2}dxdy and then
{\int_0^2}4y-4y^{2}dy and finally integrating to
(2y^{2}-\frac{4}{3}y^{3})_{0}^{2}=-\frac{8}{3}, which puzzles me to no end. If I integrate above the xy-plane, I get a negative answer, and if I integrate below the xy-plane, I get a positive answer. Can somebody illuminate me on this nonsense?(I struggled to identify properly the bounds as may be clear to you)