PeterDonis said:
Yes, that's true, but you did not specify the upward speed of the projectile in the unprimed (observer) frame. You specified it in the primed (clock) frame. (Btw, I mis-stated this somewhat in my previous post; I said that you specified v_p, but I should have said that you specified v'_p. I can go back and continue the analysis I was doing in my last post with that corrected, but it may not be worth bothering.)
No problem, that was an honest mistake. Don't bother correcting it.
And I didn't give the upward velocity in the unprimed frame because the goal is to find the speed of the beam in the first place. And we can find it since I gave the distances and times you need to do so.
So before you do this vector addition, you have to first transform the upward speed of the projectile from the primed to the unprimed frame.
You don't need to do this at all, since we are calculating speeds from given distances and times, not from different speed vectors.
The upward distance (AB in the primed frame; BC in the unprimed frame, since the clock is moving in that frame) does not change when you change frames, but the *time* does, because of time dilation
Once again, the distance does change between frames. The distance marks are clear and visible for both frames. From the clock's measurements, AB = CB = y'. For the distant observer, event B1 occurs h' lightseconds away from A. This is direct visual data. Also, time dilation effects in this setup occur because of the constant speed of the signal from B to A, not the speed of the beam - and that is the unknown we are seeking.
so the upward speed of the projectile (i.e., the upward *component* of its velocity) is different in the unprimed frame than in the primed frame. So you do need to know the relative velocity of the light clock and the observer; without that you can't transform the upward velocity in the primed frame to the upward velocity component in the unprimed frame.
But you don't have to transform upward components to find the observed speed of the beam! All you have to do is plot the given distance over the observed time, and since we know the time of the event B as seen from the light clock's frame, we can add the time the signal takes to reach A from B to find the observed time of event B as seen from A. You don't need to separate the motion into vector components at all, you have the time and distance of the event at B, you can calculate the observed speed straight from that.
Yes, let's do that. We have a light beam traveling from A to B, and a second light beam (the one that is emitted at the instant the first one strikes the mirror) traveling from B to A. The round-trip travel time is measured by the observer at A, and he already knows the distance AB because he measured it beforehand (and then controlled the speed of the light clock to ensure that the mirror was just passing B at the instant the first beam hit it). So we have two light beams each covering the same distance; if we assume that both beams travel at the same speed in the unprimed frame (even if we don't assume that that speed is c), then we can simply divide the round-trip time by the round-trip distance (2 * AB) to get the beam speed. Fine. See below for further comment.
But you can't assume both beams travel at the same speed! That's the point of the setup. You have to SHOW that. Otherwise you are assuming what you are trying to prove. If you are at rest in A relative to B and send a beam towards B, it will take 1.12s to get there, but if you are at A moving along with a mirror 1 ls away and send a beam towards the mirror, it takes 1s to reach it, even if it is coincidentally at B.
The bottom line is that the time of event B in the primed frame is 1 and that same event is observed at A when light from that event reaches A, after crossing BA. If the event at B = 1s was self generated (if it wasn't the outcome of any reflection event, like manually turning on a flash of light),
how would you find the observed time for event B as seen from A?
Only in the sense that we assume that both light beams (the one from A to B and the one from B to A) travel at the same speed. Do you challenge that assumption? Both beams are "observed" in your sense--one endpoint of each beam is directly observed by the observer at A. It's impossible for *both* endpoints of either beam to be directly observed by the same observer, so if that's your criterion for a beam being "directly observed", then no beam is ever directly observed. But if you accept that *receiving* a beam counts as directly observing it, then *emitting* a beam should also count as directly observing it; either one gives the observer direct knowledge of one endpoint of the beam.
You can't calculate the speed of light from the time of emission, you need a distance, a time of emission and a time of reception. The reception is the observation, not the emission. And although emission gives you knowledge of the coordinates of one endpoint of a beam (since you can determine the place and time of emission as you please), it is far from enough to determine any speed, any distance traveled and any timr of travel, so we absolutely need the reception coordinates.
You see, the observer moving along with the bottom mirror in the clock only knows T'B because it is half the return time (T'D), so you need both the coordinates of emission and reception to determine anything. Now, the observer at A only knows the emission coordinates for the beam (0,0,0). The next piece of information he receives is the light coming from *event B, from which he must calculate the coordinates of reception!
But how do we know the time it takes for that event to be seen at A? Are you assuming that the beam from B to A travels at c?
Yes!
If so, then why not also assume that the beam from A to B travels at c? What makes a received beam any different from an emitted beam?
Finally the fundamental question!
What makes it different is the operation. When we determine the speed if light, we take the distance from the emitter over the time of detection, which is measured locally relative to the point of detection. We are always at rest relative to the point of detection (this is also true for emission). But the detector at B is in relative motion wrt the observer at A, so he is not ar rest relative to the point of detection. This is the fundamental reason, I think, that the speeds are not the same. If you are teavelling along with the clock, you are at rest relative to the point of detection and of emission, so light is always going at c, since all motion is given to the light. If the detector is in relative motion, you are not at rest relative to the point of detection, so you can't give all motion to light. Does this make any sense? Do you ser how this does not violate the light postulate? Light is constant relative to source or detector, but the observer at A is neither source nor detector of the beam going from A to B - the source is the bottom mirror and the detector is the top mirror, and they are both moving relative to A.
By contrast, I am only assuming that the two beams (A to B and B to A) travel at the *same* speed, *without* assuming what that speed is (we *calculate* that by dividing round-trip distance by round-trip time, as above). That seems like a much more reasonable approach, since it does not require assuming that there is any difference between an emitted beam and a received beam.
Assuming the speed is the same as seen from A is the problem. You can't make that assumption. You can assume the speed from A to B as seen fron B is the same as the speed from B to A as seen from A, though, but this is not what the setup demands.
But only one endpoint of the light is directly detected. Why should received light count as directly detected but not emitted light?
See above.
No, they are both "observed" (by any reasonable definition of "observed") at the same time, when the beam from B to A is received and its time of reception is observed. At that point the observer knows the round-trip travel time and the round-trip distance and can calculate the beam speed.
That is what I meant. I just point out that the roundtrip can't be split in half to determine any speed here. Theory and experiment clearly shows that the speed from B to A must be c, the rest must be given to AB.
So must T_BA. The observer doesn't directly observe the emission of the beam from B to A, any more than he directly observes the reception of the beam from A to B. He has to calculate the times of both those events. The way he does that is to use the fact that both events occur at the same instant, by construction.
Correct, but he knows the distance AB and he knows that directly observed light must travel at c. T_BA is simply AB/c. This is where the postulate of SR makes the problem possible to solve.
PeterDonis said:
Yes, that's true, but you did not specify the upward speed of the projectile in the unprimed (observer) frame. You specified it in the primed (clock) frame. (Btw, I mis-stated this somewhat in my previous post; I said that you specified v_p, but I should have said that you specified v'_p. I can go back and continue the analysis I was doing in my last post with that corrected, but it may not be worth bothering.)
No problem, that was an honest mistake. Don't bother correcting it.
And I didn't give the upward velocity in the unprimed frame because the goal is to find the speed of the beam in the first place. And we can find it since I gave the distances and times you need to do so.
So before you do this vector addition, you have to first transform the upward speed of the projectile from the primed to the unprimed frame.
You don't need to do this at all, since we are calculating speeds from given distances and times, not from different speed vectors.
The upward distance (AB in the primed frame; BC in the unprimed frame, since the clock is moving in that frame) does not change when you change frames, but the *time* does, because of time dilation
Once again, the distance does change between frames. The distance marks are clear and visible for both frames. From the clock's measurements, AB = CB = y'. For the distant observer, event B1 occurs h' lightseconds away from A. This is direct visual data. Also, time dilation effects in this setup occur because of the constant speed of the signal from B to A, not the speed of the beam - and that is the unknown we are seeking.
so the upward speed of the projectile (i.e., the upward *component* of its velocity) is different in the unprimed frame than in the primed frame. So you do need to know the relative velocity of the light clock and the observer; without that you can't transform the upward velocity in the primed frame to the upward velocity component in the unprimed frame.
But you don't have to transform upward components to find the observed speed of the beam! All you have to do is plot the given distance over the observed time, and since we know the time of the event B as seen from the light clock's frame, we can add the time the signal takes to reach A from B to find the observed time of event B as seen from A. You don't need to separate the motion into vector components at all, you have the time and distance of the event at B, you can calculate the observed speed straight from that.
Yes, let's do that. We have a light beam traveling from A to B, and a second light beam (the one that is emitted at the instant the first one strikes the mirror) traveling from B to A. The round-trip travel time is measured by the observer at A, and he already knows the distance AB because he measured it beforehand (and then controlled the speed of the light clock to ensure that the mirror was just passing B at the instant the first beam hit it). So we have two light beams each covering the same distance; if we assume that both beams travel at the same speed in the unprimed frame (even if we don't assume that that speed is c), then we can simply divide the round-trip time by the round-trip distance (2 * AB) to get the beam speed. Fine. See below for further comment.
But you can't assume both beams travel at the same speed! That's the point of the setup. You have to SHOW that. Otherwise you are assuming what you are trying to prove. If you are at rest in A relative to B and send a beam towards B, it will take 1.12s to get there, but if you are at A moving along with a mirror 1 ls away and send a beam towards the mirror, it takes 1s to reach it, even if it is coincidentally at B.
The bottom line is that the time of event B in the primed frame is 1 and that same event is observed at A when light from that event reaches A, after crossing BA. If the event at B = 1s was self generated (if it wasn't the outcome of any reflection event, like manually turning on a flash of light),
how would you find the observed time for event B as seen from A?
Only in the sense that we assume that both light beams (the one from A to B and the one from B to A) travel at the same speed. Do you challenge that assumption? Both beams are "observed" in your sense--one endpoint of each beam is directly observed by the observer at A. It's impossible for *both* endpoints of either beam to be directly observed by the same observer, so if that's your criterion for a beam being "directly observed", then no beam is ever directly observed. But if you accept that *receiving* a beam counts as directly observing it, then *emitting* a beam should also count as directly observing it; either one gives the observer direct knowledge of one endpoint of the beam.
You can't calculate the speed of light from the time of emission, you need a distance, a time of emission and a time of reception. The reception is the observation, not the emission. And although emission gives you knowledge of the coordinates of one endpoint of a beam (since you can determine the place and time of emission as you please), it is far from enough to determine any speed, any distance traveled and any timr of travel, so we absolutely need the reception coordinates.
You see, the observer moving along with the bottom mirror in the clock only knows T'B because it is half the return time (T'D), so you need both the coordinates of emission and reception to determine anything. Now, the observer at A only knows the emission coordinates for the beam (0,0,0). The next piece of information he receives is the light coming from *event B, from which he must calculate the coordinates of reception!
But how do we know the time it takes for that event to be seen at A? Are you assuming that the beam from B to A travels at c?
Yes!
If so, then why not also assume that the beam from A to B travels at c? What makes a received beam any different from an emitted beam?
Finally the fundamental question!
What makes it different is the operation. When we determine the speed if light, we take the distance from the emitter over the time of detection, which is measured locally relative to the point of detection. We are always at rest relative to the point of detection (this is also true for emission). But the detector at B is in relative motion wrt the observer at A, so he is not ar rest relative to the point of detection. This is the fundamental reason, I think, that the speeds are not the same. If you are teavelling along with the clock, you are at rest relative to the point of detection and of emission, so light is always going at c, since all motion is given to the light. If the detector is in relative motion, you are not at rest relative to the point of detection, so you can't give all motion to light. Does this make any sense? Do you ser how this does not violate the light postulate? Light is constant relative to source or detector, but the observer at A is neither source nor detector of the beam going from A to B - the source is the bottom mirror and the detector is the top mirror, and they are both moving relative to A.
By contrast, I am only assuming that the two beams (A to B and B to A) travel at the *same* speed, *without* assuming what that speed is (we *calculate* that by dividing round-trip distance by round-trip time, as above). That seems like a much more reasonable approach, since it does not require assuming that there is any difference between an emitted beam and a received beam.
Assuming the speed is the same as seen from A is the problem. You can't make that assumption. You can assume the speed from A to B as seen fron B is the same as the speed from B to A as seen from A, though, but this is not what the setup demands.
But only one endpoint of the light is directly detected. Why should received light count as directly detected but not emitted light?
See above.
No, they are both "observed" (by any reasonable definition of "observed") at the same time, when the beam from B to A is received and its time of reception is observed. At that point the observer knows the round-trip travel time and the round-trip distance and can calculate the beam speed.
That is what I meant. I just point out that the roundtrip can't be split in half to determine any speed here. Theory and experiment clearly shows that the speed from B to A must be c, the rest must be given to AB.
So must T_BA. The observer doesn't directly observe the emission of the beam from B to A, any more than he directly observes the reception of the beam from A to B. He has to calculate the times of both those events. The way he does that is to use the fact that both events occur at the same instant, by construction.
But he knows the distance AB and he knows that directly observed light must travel at c. T_BA is simply*
Unbelievable; you now *admit* this, yet you were arguing that we could *not* assume this before.
This applies if the observer and the point B are at rest wrt each other.
See above.
Which it is; the time of event B, *in the unprimed frame*, *is* 1.12s (if we allow v, the velocity of the light clock relative to the observer, to be set appropriately to 0.45 instead of 0.5, per the comments of DaleSpam, harrylin, and myself). The time of event B, in the *primed* frame, is 1s; but that's not what the observer at A is interested in. He's interested in the time of event B in his frame, the unprimed frame, and that time is different from the time of event B in the primed frame because of time dilation. Which, of course, requires you to know the velocity of the light clock relative to the observer, contrary to your repeated erroneous claim that you don't.
I think I have answered this above, but just for good measure, notice I said it must be 1s as seen from B, which would be in the primed frame. But we know that the mirror at B must detect the beam at T=1s measuring from its internal clock, and si the event B must be seen by the observer at A at T=T'AB+TBA.
Notice that T'AB = CB and TAB is not even measurable from A. TAB is strictly a measurement made in the clock's frame, or more precisely, in the top mirror's frame, since this detection only happens there. The observer at A detects the signal from B to A, and from the given distance and the light speed postulate, he can subtract the time it took light to reach him from event B and find the time of the event in the primed frame. The times are different indeed, but I don't know if I should call the reason "time dilation".
Anyway, I'll wait for your follow-up.