As
@Buzz Bloom noted, telomerase is a double-edged sword when it comes from aging. Telomere errosion is one (of many) factors that contributes to aging, so lifespan extension probably requires some means to extend telomeres in senescent cells. At the same time, cancer progression also requires telomere extension, so the worry is that any therapy that extends telomeres would also increase cancer risk.
A large issue, however, is that aging is a multifaceted problem. There are many factors that contribute to aging and if you focus only on one, then the others will kill you instead. Thus, increasing the maximum lifespan of humans requires solving all of the issues simultaneously, a fact made even more difficult because some of the solutions may not be mutually compatible (e.g. the issue of telomere extension potentially promoting cancer). Here's a link to a nice (though fairly technical) review of the
biological factors influencing aging. The article points to nine major factors, of which, telomere errosion is only one: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing,
mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication.