What Happens to Angular Velocity When a Disc is Dropped onto a Rotating Hoop?

AI Thread Summary
The discussion focuses on the conservation of angular momentum when a disc is dropped onto a rotating hoop. The initial angular momentum of the hoop is calculated, and it is noted that external forces like friction must be negligible for the conservation laws to apply. The final angular velocity is derived by equating initial and final angular momentum, leading to a calculated final angular velocity of 3.65 s-1. Participants emphasize the importance of using the correct equations for rotational motion, specifically relating mass to moment of inertia. The conversation highlights the need for clarity in labeling variables to avoid confusion in calculations.
boognish
Messages
15
Reaction score
0
1. A hoop with mass 2.0 kg and radius 1.5 m is rotating with initial angular velocity of 5.4 s-1. A disc with the same mass and radius is dropped on top of the hoop so that the centers coincide. What conservation law applies here? What assumptions must you make to apply it? What is the final angular velocity?



2. Kinetic energy 1 = kinetic energy 2

Ke hoop = m x v^2
ke disc = 1/2 m x v^2




3. Conservation of momentum
There must be no additional external forces like air resistance or friction

ke hoop = 2.0 kg x 5.4 s-
Ke hoop initial = 10.8 kg m s-

Now i don't know if this works like a simple collision where I would factor in the new mass of the disc placed on it... but I am sure that I would have to factor in the moment of inertia of said disc so 1/2 m x v^2 to determine the change in angular velocity.
 
Physics news on Phys.org
What conservation law applies here?
-- conservation of angular momentum.

What assumptions must you make to apply it?
-- no friction? What is holding the two objects together then?

What is the final angular velocity?
-- your stated conservation law was "momentum" so you should be using the momentum equations here and not the KE ones.

The way to tackle conservation problems is to think in terms of "before" and "after" stuff happens - ignore the "during". The math works much the same as the linear case you've done before but with the rotational equations - so mass becomes "moment of inertia" and velocity becomes "angular velocity" so ##p=mv## (linear momentum) becomes ##L=I\omega## (angular momentum)
 
Simon Bridge said:
-- no friction? What is holding the two objects together then?
Boognish did specify external forces.
 
so understanding what you have told me i think that it resolves to:

Li= m r^2 w
Li = 2.0 x 1.5^2 x 5.4-s
Li = 24.3

Lf = Li

Lf = (Ii + If) x wf

Lf = ((m R^2 + (1/2 m R^2)) x Wf

24.3 = ((2.0 x 1.5^2) + (.5 x 2.0 x 1.5^2)) x wf
wf = 3.65s-

Any thoughts?
 
haruspex said:
Boognish did specify external forces.
Oh yes, my bad. "Friction was an example of the kind of thing. Question still stands though.
Objects held together by internal forces?

@boognish: that's what I described all right.
I'd watch the labels myself though ... one may expect that Lf = If.wf where If = I(hoop)+I(disk)
You wouldn't want to do all that work and get marked down because the marker misread you.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top