wildman
- 29
- 4
Homework Statement
Find R(\tau) if a) S(\omega) = \frac{1}{(4+\omega^2)^2}
Homework Equations
I have given \frac{4}{4+\omega^2} <==> e^{-2|\tau|}
The Attempt at a Solution
So S(\omega) = \frac{1}{(4+\omega^2)^2}= <br /> \frac{1}{16}\frac{4}{(4+\omega^2)}\frac{4}{(4+\omega^2)}R(\tau)= \frac{1}{16} e^{-2|\tau|} * e^{-2|\tau|}
Where * is convolutionSo
R(\Tau) = \frac {1}{8}\int_{0}^{\infty} e^{-2(\tau-\alpha)} e^{-2\alpha} d\alpha
But that turns out to be infinite. Does anyone have any idea where I went wrong?
Last edited: