What is the magnetic-field energy in a given volume with B = 3.50T?

AI Thread Summary
To calculate the magnetic-field energy in a volume of 10.0 cm³ with a magnetic field strength of B = 3.50 T, the relevant formula is u = B²/2μ0. A participant initially calculated the energy density as 4.87 x 10^5 J/m³ but realized the question requires total energy in Joules, not energy density. The correct approach involves multiplying the energy density by the volume to find the total energy. After clarification, it was confirmed that the participant should multiply their energy density result by the volume to obtain the correct answer. The discussion emphasizes the importance of unit conversion from energy density to total energy.
Jack_M
Messages
6
Reaction score
0

Homework Statement


What is the magnetic-field energy in a 10.0cm3 volume of space where B = 3.50T?

Homework Equations


u = B2/2μ0

The Attempt at a Solution


Using the equation I got an answer of 4.87*105 J/m3 which is incorrect
 
Physics news on Phys.org
It doesn't ask for the energy density, which is what you gave. It asks for the energy, so your final answer should be in Joules, not Joules/m^3.
 
phyzguy said:
It doesn't ask for the energy density, which is what you gave. It asks for the energy, so your final answer should be in Joules, not Joules/m^3.
Should an answer using that formula along with those units be correct, though? I only have 2 more submissions available.
 
Jack_M said:
Should an answer using that formula along with those units be correct, though? I only have 2 more submissions available.
Yes, you're on the right track. You have calculated the energy density almost correctly. I got 4.87*106 J/m3, so one of us made a mistake. Then how do you go from energy density to energy?
 
Oh I see now. I should multiply by the volume of the space correct?
 
Yes.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top