What is the Pressure Change in an Aortic Aneurysm?

AI Thread Summary
In an aortic aneurysm, blood pressure changes due to the difference in vessel radius, with the aneurysm having a radius of 2.5 cm compared to 1.0 cm in the normal aorta. The average flow rate is 120 cm³/s, and the poster calculated the cross-sectional areas to find velocities in both sections. They identified the need to apply Bernoulli's equation to determine the pressure difference but were unsure how to proceed. The discussion centers on calculating the average pressure increase inside the aneurysm compared to the normal aorta. Assistance is sought to complete the solution using the relevant equations.
trace
Messages
1
Reaction score
0

Homework Statement



In an aortic aneurysm, a bulge forms where the walls of the aorta are
weakened. If blood flowing through the aorta (radius 1.0 cm) enters an aneurysm with a radius of 2.5 cm, how much on average is the blood pressure higher inside the aneurysm than the pressure in the unenlarged part of the aorta? The average flow rate through the aorta is 120 cm3/s. Assume the blood is nonviscous and the patient is lying down so there is no change in height.
A. 150 kPa B. 75Pa C. 75 kPa D. 62 Pa E. 750 Pa


Homework Equations





The Attempt at a Solution



So I thought I was on the right track, I found the area of both the normal blood vessel, and where the aneurysm is using A=pi*r^2 for A1= 3.142 and A2= 19.63, then I used rate flow=A1v1=A2v2 to find the velocity in both. I got v1= 38.20 and v2= 6.116.

I know I should somehow use Bernoulli's equation, or I think I should, but I have no idea what to do now.

Any help would be appreciated!

Thanks
 
Physics news on Phys.org
[PLAIN]http://sadpanda.us/images/356707-AZHJ37V.jpg

If the image link above doesn't work, open the file I attached herein..
 

Attachments

Last edited by a moderator:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top