What is the relationship between tension and mass in a system with friction?

Click For Summary
SUMMARY

The discussion centers on the relationship between tension and mass in a two-block system with friction. The blocks, with masses m and M (where M > m), are subjected to a force F, causing them to slide on a surface with a coefficient of kinetic friction µk. The analysis reveals that the tension in the string connecting the blocks differs based on the direction of the applied force. Specifically, when the force is applied to block M, the tension Tb is greater than Ta when the force is applied to block m, due to the differing frictional forces acting on each block.

PREREQUISITES
  • Understanding of Newton's Second Law (ΣF = ma)
  • Knowledge of kinetic friction and its calculation (Fk = µk * N)
  • Familiarity with free body diagrams (FBD) for analyzing forces
  • Concept of normal force (Fn) and its relationship to weight (Fg = mg)
NEXT STEPS
  • Study the effects of varying coefficients of friction on tension in similar systems.
  • Learn about the dynamics of multi-body systems under external forces.
  • Explore the implications of constant acceleration versus constant velocity in tension analysis.
  • Investigate the role of mass distribution in systems with multiple connected bodies.
USEFUL FOR

Students in physics, particularly those studying mechanics, as well as educators and anyone interested in understanding the dynamics of tension in systems with friction.

SakuRERE
Messages
68
Reaction score
5

Homework Statement


In the figure above a block of mass m is connected to a block of mass M > m by a string. Both blocks sit on a smooth surface with a coefficient of kinetic friction µk between either block and the surface. In figure a), a force of magnitude F (large enough to cause both blocks to slide) is exerted on block M to pull the system to the right. In figure b), a force of (the same) magnitude F is exerted on block m to pull the system to the left. Circle the true statement:
a) The tension Ta > Tb.
b) The tension Ta < Tb.
c) The tension Ta = Tb.
d) There is not enough information to determine the relative tension in the two cases.

known data:
we know that both blocks have the same coefficient of friction and that their masses are different.

Homework Equations


ΣF= ma
μk= Fk*N

The Attempt at a Solution


I drew first the FBD of both block in each situation and wrote the equation. for the first situation (a)
Block M has this equation:
ΣF= ma
F-Ta-Fk=Ma
Ta=F-Fk-Ma
Ta=F-μkMg-Ma
while block m I ended up with:
Ta=ma+μkmg

and for the second situation:
block M equation:
Tb= Ma+μkMg
and block m:
Tb=F-μkmg-ma

so I said since larger mass has larger KInetic Friction Fk, compared to the small one, and because of comparing the Ta equation of M and the Tb equation of M then Tb I guess is bigger.
I don't know if I
upload_2018-10-4_19-48-2.png
am right or not.
 

Attachments

  • upload_2018-10-4_19-48-2.png
    upload_2018-10-4_19-48-2.png
    3.3 KB · Views: 789
  • Like
Likes   Reactions: berkeman
Physics news on Phys.org
Several things. First, the problem doesn’t explicitly state it, but you should evaluate this at constant velocity, ie a=0. Second, your approach is more complicated than it needs to be. You wind up with answers in “F” which you don’t know. You can figure out F but why bother? Look at figure a). What is the tension if m is 0? Clearly the tension is all about block m, and you can evaluate it considering only the forces on m. Similarly in case b you need only evaluate the forces on M.
 
  • Like
Likes   Reactions: SakuRERE
Cutter Ketch said:
Several things. First, the problem doesn’t explicitly state it, but you should evaluate this at constant velocity, ie a=0. Second, your approach is more complicated than it needs to be. You wind up with answers in “F” which you don’t know. You can figure out F but why bother? Look at figure a). What is the tension if m is 0? Clearly the tension is all about block m, and you can evaluate it considering only the forces on m. Similarly in case b you need only evaluate the forces on M.

First Thanks for your respond
I Knew i was complicating things more than how it should be.
So just to make sure, It's all about that mass being dragged by the rope, and since at the second situation The bigger mass and one having bigger fk then considering the system having the same acceleration :
Tb of M= Ma+fk
Ta of m= ma+fk
so Tb>Ta
thanks again
 
SakuRERE said:
Tb of M= Ma+fk
Ta of m= ma+fk
so Tb>Ta

Like I said,I would take a to be 0, so in what you wrote above it wouldn’t be clear which is larger. However you wrote “fk” in both, which I presume means the force from sliding friction. Is that the same in the two cases? What is the magnitude of the frictional force in terms of the mass?
 
  • Like
Likes   Reactions: SakuRERE
Cutter Ketch said:
Like I said,I would take a to be 0, so in what you wrote above it wouldn’t be clear which is larger. However you wrote “fk” in both, which I presume means the force from sliding friction. Is that the same in the two cases? What is the magnitude of the frictional force in terms of the mass?
you're right, I must have written Fk of M and Fk of m,
since Fk= μk*Fn (Fn is the normal force) and it's mentioned that both blocks have the same μk
so we know both blocks have different masses and then they have different Fn because of Fn=Fg=mg (weight)
and I think there is no problem considering the acceleration a= constant value rather than a=zero since all other variables we know how they are different in each block.
 
SakuRERE said:
you're right, I must have written Fk of M and Fk of m,
since Fk= μk*Fn (Fn is the normal force) and it's mentioned that both blocks have the same μk
so we know both blocks have different masses and then they have different Fn because of Fn=Fg=mg (weight)
and I think there is no problem considering the acceleration a= constant value rather than a=zero since all other variables we know how they are different in each block.

True. Your answer is more general and you see both terms are proportional to mass. However I wanted you to show that the second term is proportional to mass as I believe that is the point of the question (the first term having nothing to do with friction)
 
  • Like
Likes   Reactions: SakuRERE
Cutter Ketch said:
True. Your answer is more general and you see both terms are proportional to mass. However I wanted you to show that the second term is proportional to mass as I believe that is the point of the question (the first term having nothing to do with friction)
I do get what you mean, I have always been afraid of coming with assumptions from my mind. But at the end, you are an expert, and I see why you suggest studying the system when a=0 because we already have the mass (which is the only important thing in the first term) in the second term as a weight. I wish I got your idea right.
thanks again
 

Similar threads

Replies
13
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K