The point of controversy in the "interpretation question" is also not so much the dynamics but rather the interpretation of the states themselves, which in the standard theory is just Born's Law (no collapse necessary), i.e., the usual probabilistic content of the state. There is, however, nothing which makes a collapse postulate necessary. You just state that QT predicts probabilities for measurement given the preparation of the measured system (and preparation can be very crude, e.g., you describe a gas by the usual thermodynamical quantities like temperature, volume of the container, and density of conserved charges), which allows the association of a statistical operator to the system.
From this point of view, if you introduce a collapse into QT, you have to introduce it for the probabilities in classical statistical physics too. E.g., take a dice (thought of as a classical system) and you just say that the indeterminism of the outcome of throughing it comes from the unknown initial conditions, there will always be a clear and not a somehow "smeared" outcome. Nobody would come to the idea of a "collapse", i.e., it just turns up with a specific result, and throughing many times leads to an experimental test of the prediction of any theoretical probability. You can also envoke some theory behind how to postulate such probabilities like information theory a la Shannon and say that as long as you don't know anything about the dice you say each outcome will have a probability of 1/6 (maximum-entropy probability). Then you can do the experiment and confirm or refute the estimate of the probabilities with some confidence level given the experimental outcomes of your measured ensemble.
Where is the difference to QT? The only difference is that, according to the minimal interpretation, the observables that are not determined by the preparation, are "really random", i.e., they have indeed no determined value and not only because we don't know them. Then a lot of philosophical mumbling is done about, how it can be that one has a clear outcome of any proper measurement of such observables. My point is that this is due to the construction of the measurement device, which works with very good precision as a classical system, and classicality can be explained satisfactorily by quantum statistics and coarse graining. It's just the usual quantum theoretical dynamics ("unitary evolution") of this interaction, and this interaction is (according to the best QT we have, which is relativistic local QFT) local and thus there cannot be an instantaneous influence of a measurement at a position A to another far-distant measurement at position B, but that's what's postulated when "envoking" a collapse.