Why Does [H, Q] = 0 Imply d<Q>/dt = 0?

  • Thread starter Thread starter syang9
  • Start date Start date
  • Tags Tags
    Means Proof
syang9
Messages
61
Reaction score
0

Homework Statement



Show any operator Q that commutes with the Hamiltonian, [Q,H] = 0, is conserved in the above sense (d/dt〈Ψ|QΨ〉 = 0).
The solution to this problem is as follows:

iħd/dt〈Ψ|QΨ〉 = (iħd/dt〈Ψ|)|QΨ〉 + 〈Ψ|(|Qiħd/dtΨ〉 = –〈HΨ|QΨ〉 + 〈Ψ|QHΨ〉 = 〈Ψ|[QH]Ψ〉 = 0.

What I am confused about is the second step:

<br /> \[i\hbar \frac{d}{{dt}}\left\langle \psi \right|\left. {Q\psi } \right\rangle = \left\langle {i\hbar \frac{d}{{dt}}\psi } \right|\left. {Q\psi } \right\rangle + \left\langle \psi \right|\left. {Qi\hbar \frac{d}{{dt}}\psi } \right\rangle\]<br />

Why is this true? Where did the sum come from? Why is the Hamiltonian before Q in the second term of the sum? What allows you to put it in that order? Does it matter (I assume it does since we're trying to prove a commutation relation here..)
 
Physics news on Phys.org
well, poisson brackets satsify the next relation where @ stands for partial derivative:
df/dt=[f,H]+@f/@t
so what you wrote in the title is correct only if f isn't explicitly depended on t.
for your last question obviously we have here the derivative of a multiplication.
in a unitary space, <psi|Q(psi)>=<Q(psi)|psi>* where * stands for complex conjugate.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top