Why does the propagation constant in the Helmholtz equation include j?

  • Thread starter Thread starter baby_1
  • Start date Start date
AI Thread Summary
The discussion centers on the presence of the imaginary unit "j" in the propagation constant γ of the Helmholtz equation. It highlights confusion regarding the equation γ = j √(ω²μ(1 - jσ/ω)), where the factor of j appears to be a mistake. Participants clarify that the correct representation should reflect a negative sign for the propagation constant. The conversation emphasizes the importance of understanding the mathematical representation of electromagnetic wave propagation. Overall, the inclusion of j is linked to the complex nature of wave behavior in lossy media.
baby_1
Messages
159
Reaction score
16
Homework Statement
This is my own question: Why do we intentionally include the imaginary unit jj in the propagation constant after taking its square root?
Relevant Equations
Helmholtz equation
Here is my question:
$$
\nabla^2 \bar{E} + \omega^2 \mu \left( 1 - j \frac{\sigma}{\omega} \right) \bar{E} = 0
$$

where

$$
\gamma = \alpha + j \beta
$$

$$
\gamma^2 = \omega^2 \mu \left( 1 - j \frac{\sigma}{\omega} \right)
$$

$$
\gamma = j \sqrt{ \omega^2 \mu \left( 1 - j \frac{\sigma}{\omega} \right) }
$$

why is there a factor of j in the expression for γ?
 
Physics news on Phys.org
baby_1 said:
$$
\gamma^2 = \omega^2 \mu \left( 1 - j \frac{\sigma}{\omega} \right)
$$

$$
\gamma = j \sqrt{ \omega^2 \mu \left( 1 - j \frac{\sigma}{\omega} \right) }
$$

why is there a factor of j in the expression for γ?
Yes, the ##j## outside the square root in the second equation above looks like a mistake. If you square this equation, you do not get the first equation.

Where did you see the second equation?
 
Dear TSny,

Thank you for your help.
In many electromagnetics resources, I have noticed that the propagation constant is often represented with a "j," but I am having trouble understanding why this is the case. I have attached one of the references for your review.
 

Attachments

I realized my mistake: in the main equation, the sign of the propagation constant should be negative. Thank you once again for your help!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top