Why only l=1 of spherical harmonics survives?

mr.canadian
Messages
2
Reaction score
0

Homework Statement



The question is about page 198 of Jackson's Classical Electrodynamics. The magnetic scalar potential is set to be:

Phi = ∫ (dΩ' cosθ'/ |x-x'|).

Using the spherical harmonics expansion of 1/|x-x'|, the book claims that only l=1 survives. I don't know why terms of l≠1 vanish


The Attempt at a Solution



I considered the addition theorem of 1/|x-x'| that contains on Y* (θ',ϕ'). I am trying to see whether the sin's and cos's inside Y* (θ',ϕ') are orthogonal to cosθ' for l≠1, but I had no success doing so. I could not think of other reasons why only l=1 terms survive.

Any ideas
 
Physics news on Phys.org
Are sines and cosines not orthogonal?
Don't forget the range of the integration.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top