Work Done by Theme Park Machine on Rider

Click For Summary
The discussion focuses on calculating the work done by a theme park machine on a rider being lifted to a height of 78 meters. The force exerted by the machine is represented as mg, but there is confusion regarding the normal force and whether it must exceed gravitational force to achieve upward acceleration. It is clarified that a force slightly greater than mg is sufficient to lift the rider at a constant speed, as the net force during this phase is minimal. The conversation also touches on the machine's design, suggesting it can hold multiple riders safely even when not in operation. Overall, the key point is understanding the relationship between the forces acting on the rider during the lift.
Balsam
Messages
226
Reaction score
8

Homework Statement


A drop tower lifts riders at a constant speed to a height of 78m and suddenly drops them. Determine the work done on a 56kg rider by the machine as she is lifted to the top of the ride.
F=mg
displacement=78m
θ= 0 degrees

Homework Equations


W=FΔdcosθ

The Attempt at a Solution


I solved this problem, by plugging in mg as the force. But, I am confused. If you plug in mg as the force exerted by the machine on the rider, doesn't that mean that the normal force exerted on the rider is the force that lifts them up 78m. How does that make any sense? Shouldn't there be a force with a magnitude greater than Fg to lift the rider up. Doesn't having Fn and Fg as the only y component forces mean that there's no (Fnet)y? That would mean there's no acceleration in the y component, which there is because the rider is lifted up 78m. Can someone please explain this to me?
 
Physics news on Phys.org
Fnet = T - mg = ma
Where; T = tension (at rest).

The problem statement seems to be only concerned with the amount of acceleration force needed to lift the '56kg rider'.

Can we presume that the machine is designed to hold multiple riders even when turned off, such that energy is only consumed through acceleration?
 
Balsam said:

Homework Statement


A drop tower lifts riders at a constant speed to a height of 78m and suddenly drops them. Determine the work done on a 56kg rider by the machine as she is lifted to the top of the ride.
F=mg
displacement=78m
θ= 0 degrees

Homework Equations


W=FΔdcosθ

The Attempt at a Solution


I solved this problem, by plugging in mg as the force. But, I am confused. If you plug in mg as the force exerted by the machine on the rider, doesn't that mean that the normal force exerted on the rider is the force that lifts them up 78m. How does that make any sense? Shouldn't there be a force with a magnitude greater than Fg to lift the rider up. Doesn't having Fn and Fg as the only y component forces mean that there's no (Fnet)y? That would mean there's no acceleration in the y component, which there is because the rider is lifted up 78m. Can someone please explain this to me?
A force only slightly higher than mg is all that is required to lift the rider.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
3
Views
3K
  • · Replies 11 ·
Replies
11
Views
6K
  • · Replies 56 ·
2
Replies
56
Views
4K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K