What is Electrostatics: Definition and 675 Discussions

Electrostatics is a branch of physics that studies electric charges at rest.
Since classical physics, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber, ήλεκτρον, or electron, was thus the source of the word 'electricity'. Electrostatic phenomena arise from the forces that electric charges exert on each other. Such forces are described by Coulomb's law.
Even though electrostatically induced forces seem to be rather weak, some electrostatic forces such as the one between an electron and a proton, that together make up a hydrogen atom, is about 36 orders of magnitude stronger than the gravitational force acting between them.
There are many examples of electrostatic phenomena, from those as simple as the attraction of the plastic wrap to one's hand after it is removed from a package to the apparently spontaneous explosion of grain silos, the damage of electronic components during manufacturing, and photocopier & laser printer operation. Electrostatics involves the buildup of charge on the surface of objects due to contact with other surfaces. Although charge exchange happens whenever any two surfaces contact and separate, the effects of charge exchange are usually only noticed when at least one of the surfaces has a high resistance to electrical flow. This is because the charges that transfer are trapped there for a time long enough for their effects to be observed. These charges then remain on the object until they either bleed off to ground or are quickly neutralized by a discharge: e.g., the familiar phenomenon of a static "shock" is caused by the neutralization of charge built up in the body from contact with insulated surfaces.

View More On Wikipedia.org
  1. P

    Potential energy due to an external charge and a grounded sphere

    Let us attempt part C first, which is to find the total energy of the entire system. I can definitely find an expression for the force, as given by Coulomb's Law. However, why should I integrate this force from infinity to d, where d is the distance of the external charge to the centre of the...
  2. P

    Force needed to hold together a capacitor

    I have 2 methods, which give 2 different solutions: Let sigma = charge per unit area Let plate 1 be the left plate, plate 2 = right plate. Method 1: Because they are insulating, consider the electric field at 3 regions; region 1 to the left of plate 1, region 2 between the plates, and region 3...
  3. iVenky

    Dielectric and Attraction Between Oppositely Charged Plates

    I am not able to intuitively understand the reasoning behind why the presence of dielectric between oppositely charged plates, let's say, reduces the force of attraction between the plates. I understand to some extent that electric field lines prefer to flow through dielectric (or insulator)...
  4. llha

    E-Field immediately outside a charged conductor

    Griffith's says this, and I'm not exactly sure why... If you had a solid, spherical, and externally induced conductor... Does this mean that IMMEDIATELY outside, when you're infinitesimally close to the surface, E looks like this? If you surround the entire conductor with a Gaussian surface...
  5. R

    Electrostatic Induction in Metals vs Insulators

    If we have a small dielectric sphere and a point charge, they will experience an attractive force due to electrostatic induction. (From the elongation/rotation of charges bound to individual atoms). Likewise, if we have a small metallic sphere and a point charge, they will experience an...
  6. sroot

    Help with electrostatics problem (spherical shell charge distribution)

    According to my professor, the solution in this book (pages 20-21) for item (ii) is wrong: https://www.u-cursos.cl/usuario/75468645ed16a71af6da3ffd813d47f5/mi_blog/r/Problems_and_Solutions_on_Electromagnetism.pdf
  7. B

    Understanding the electric field of a sphere with a hole

    Here's an image. O and O' are the respective centers, a is the distance between them, r is the distance from the center of the sphere to P, and r' = r - a, the distance from O' to P. The approach (which I don't understnad) given is to use Gauss' Law and superposition, so that we calculate the...
  8. patric44

    Finding the magnetic field B given the vector potential A ?

    hi guys this seems like a simple problem but i am stuck reaching the final form as requested , the question is given the magnetic vector potential $$\vec{A} = \frac{\hat{\rho}}{\rho}\beta e^{[-kz+\frac{i\omega}{c}(nz-ct)]}$$ prove that $$B = (n/c + ik/\omega)(\hat{z}×\vec{E})$$ simple enough i...
  9. P

    Electrostatics - two charged balls

    Could somebody check my solution in this task? Is it correct?
  10. AHSAN MUJTABA

    Electrostatics problem related to polarization and a cylindrical dielectric

    I understand that the above eqs would be used but I clearly don't know how to use them. I am a bit confussed.
  11. P

    Electrostatics: Calculate the Electric Field near a Charged Ring

    I have the problem with my solution. I don't know it is correct. Could somebody check it?
  12. B

    Redistribution of Pre-Charged Capacitors

    I first calculated the charge each capacitor has after its directly charged by the 36 V battery. ##Q_1 = C_1 * V = (2 \mu F) * 36 V = 72 \mu C## ##Q_2 = C_2 * V = (5 \mu F) * 36 V = 180 \mu C## ##Q_3 = C_3 * V = (7 \mu F) * 36 V = 252 \mu C## Then these capacitors connect in series, so I...
  13. AHSAN MUJTABA

    Electrostatics potential calculation for a uniformly charged square

    I took a surface element dA at the surface of square at point x',y' now I took a point on x-axis and calculated the flux. But I got a very complicated integral though it should be simple and I can't interpret it
  14. preachingpirate24

    Electric Field inside the material of a hollow conducting sphere

    Let's say I place a positive point charge inside a hollow conducting sphere. If we take a Gaussian surface through the material of the conductor, we know the field inside the material of the conductor is 0, which implies that there is a -ve charge on the inner wall to make the net enclosed...
  15. Amitkumarr

    To find induced charges on the edges of a right pyramid

    Due to symmetry of the system,when the frame is rotated to make the electric field point from corner A to corner C,the magnitude of charges induced on these-(AB,BC,CD,DA),(OA,OC),(OB,OD) will be equal(different for each group but same for elements in these groups). For the sign of induced...
  16. B

    I Schiff moment in classical electrostatics

    Hello! I just found out about the Schiff moment. This is the paper where I encountered it, equations 3 and 4. The paper covers other things, too, that are not related to my question. The main question I have is that, it seems like the derivation from equation 1 to 4 is purely classical (one can...
  17. Flaming Physicist

    Electric force between two equal parallel rings of charge

    The problem is symmetric around the z axis, thus the force must be in the z direction only. I tried dividing both rings into differential elements, then integrating through the upper ring to get the z component of the total force on the upper ring due to a differential element of the lower ring...
  18. Zeymare

    Electrostatics and capacitors

    i didnt understand anything really, i read it a few times but i don't get it
  19. B

    Max surface charge of a conductive plate

    1. Can I use the surface charge equation: $$Q = \frac{Vk\epsilon_0A}{d}$$ Where V = Voltage, k = dielectric constant, ϵ0 = permittivity of free space , A = Area of plate and d = distance between plates. For a conductive plate within an electric field? My thinking is that if the plate is...
  20. O

    Higher dimensional FTC in electrostatics: Mathematically rigorous or not?

    I have two volumes ##V## and ##V'## in space such that: 1. ##∄## point ##P## ##\ni## ##[P \in V ∧ P\in V']## 2. ##V## is filled with electric charge ##q## 3. ##\rho = \dfrac{dq}{dV}## varies continuously in ##V## 4. ##V'## is filled with electric charge ##q'## 5. ##\rho' =...
  21. I

    Electrostatics question (Work and Potential)

    a) From X -Y. The work done on the positive charge is negative as the displacement is in the negative y-direction i.e. It is a positive charge moving in parallel to a negative E-field: W= F*(-s) = (+)(-) = - b) Y-Z. The work done is 0. The E-field in the x-direction is 0 as they cancel due to...
  22. T

    In electrostatics, what is meant by positive charges?

    I am needing clarification for a concept. I understand that electrons carry a negative charge and that protons carry a positive charge. I also understand that a plastic rod picks up electrons when I rub it with a piece of wool. From the conservation of charge, the piece of wool must have a...
  23. R

    Exploring the Physics of Attraction & Repulsion: A Feynman Lecture

    "Suppose we have another ther charge some distance away. Would it feel any attraction? It would feel practically none, because if the first two are equal in size, the attraction for the one and the repulsion for the other balance out.Therefore there is very little force at any appreciable...
  24. R

    A doubt on Electrostatics -- An electrified rod attracting light objects

    "When electrified rods are brought near light objects, a similar effect takes place. The rods induce opposite charges on the near surfaces of the objects and similar charges move to the farther side of the object." -from a high school physics book. NCERT Class 12th part 1 to be precise. can...
  25. F

    Electric field Difference between Electrostatics and Electrodynamics

    Hello everyone, I have been pondering on the behavior of the E field in conductors. In electrostatics (where the charges are not moving): a) Electric fields are time- independent but position-dependent b) Electric fields are always zero inside a charged or uncharged conductor. At the...
  26. L

    Understanding the concept of voltage

    Hi everyone! I ask some help in understanding better the concept of voltage. The voltage is a difference in electric potential between two points ##a## and ##b##. It is defined as However, I'm a bit confused with the use of notation: - Is ##V_{ab}## the same as ##\Delta{V}##, or rather...
  27. torito_verdejo

    Electrostatics: sign of the potential

    The final result will only differ in its sign, but this is crucial. Having a positively, radially oriented electric field ##\textbf{E}##, I understand that the sign of the integral should be positive (## - (- A) = A##), but it is not! How and why is this the case? A line integral where the...
  28. L

    Capacitance with dielectric permittivity that depends on r

    The first part (which I believe I've done correctly) asks us to find the electric displacement everywhere. For this: $$\int D \cdot da = Q_{f,enc}$$ For a < r < b: $$D = \frac{Q}{4\pi r^2} \hat{r}$$ Otherwise, D = 0 When finding the capacitance, I'm unsure how to handle the r dependence. I...
  29. M

    Electrostatics: Understanding this "Work Done" Line Integral Question

    I have a quick question about the work done concept here, especially the line integral part of it. So I understand the fact that the work done from getting from point A to B is: \int_{a}^{b} \vec F \cdot d\vec r . However, within the context of electric fields, when we define electrostatic...
  30. NP04

    What is this constant (regarding electrostatics)

    My only question is what the εo symbol represents.
  31. N

    Studying Self study of Electrostatics Advice needed

    I am unsure whether this is the right forum to ask this question. This isn't a homework question but it has been troubling me for a while now. My university has replaced Electrostatics in our syllabus with Geophysics. So I am currently self-teaching Electrostatics using Griffith's Introduction...
  32. T

    Electrons cannot sense electrostatic force?

    Why there is not voltage or current just for 1ms if I connect a multimeter ground to the negative terminal of a DC power supply or charged capacitor? Why electrons in measure lead and DMM device cannot sense a bulk of electrons (or lack of it)? I tried with an 5kV DC power supply too. In an...
  33. Z

    The Energy of a Continuous Charge Distribution (Griffiths EM Sect. 2.4.3 3rd ed)

    I'm working through Griffiths EM 3rd ed. in section 2.4.2 (point charge distribution) and 2.4.3 (continuous charge distribution). I understand from the section on point charge distributions that when we add up all the work (excluding the work necessary in creating the charge itself), one clever...
  34. Aryamaan Thakur

    Electric potential at the edge of a thin charged circular plate

    My question might sound stupid to you but please clear my confusions. I'm taking an circular arc like element on the plate. That arc has a radius of 'r' (AB) and the radius is inclined at an angle 'θ' with OA (∠OAB). The area between arc of radius r and r+dr is dA. dA = 2θr.dr The charge on...
  35. ybisno

    Given Electric field, find the charge densities

    Hi. Need help with physics homework. I was able to separate each term and find sigma from the second term and possibly lambda from the first term. Not sure how to approach the third term. (attached attempt at question)
  36. ybisno

    Given Electric Field, Find the charge densities.... (Electrostatics)

    Hi. Need help with physics homework. I was able to separate each term and find sigma from the second term and possibly lambda from the first term. Not sure how to approach the third term. (IMAGE ATTACHED)
  37. Z

    The potential between a cone and a plate

    Homework Statement [/B] There is a conducting cone with angle α placed so that its vertex is normal to an electrically grounded plate, but electrically insulated from the plate and kept at a constant potential V. Find the potential V and the electric field in the region between the cone and the...
  38. PhysicsKT

    Energy density of an electromagnetic field

    The energy density of an electromagnetic field with a linear dielectric is often expressed as . It is also known that energy can be found by . Using the latter, the energy density is found to be , as is well known. If you integrate the latter only over free charge and ignore bound charge, you...
  39. P

    Corollary of the Uniqueness Theorem in Electrostatics

    Following my instructor's notes the statement of the Uniqueness Theorem(s) are as follows "If ##\rho_{inside}## and ##\phi_{boundary}## (OR ##\frac{d \phi_{boundary}}{dn}## ) are known then ##\phi_{inside}## is uniquely determined" A few paragraphs later the notes state "For the field inside...
  40. Aya Elsayed

    I Grounding Process: Neutralizing Negatively Charged Objects

    Let us consider a negatively charged object. We want to neutralize this object, so we touched it by our hands to remove the excess of negative charges by Grounding. Now the question is : Will our body (The Ground) be negatively charged as it gained those negative charges? then why it is called...
  41. A

    What is the electric field of a point charge?

    Assuming the point charge lies at the origin, what is the electric field at the origin? Zero or undefined?
  42. WhiteWolf98

    Electrostatics - Coulomb's Law

    Homework Statement The magnitude of the electrostatic force between point charges ##q_1 = 26~\mu C## and ##q_2 = 47~\mu C## is initially ##F_1=5.70~N##. The separation distance between the charges, ##r_1## is then changed such that the magnitude of the force is, ##F_2=0.57~N##. (a) What is the...
  43. C

    Exploring Electrostatics with Gauss Theorem

    Having come experimentally to an interesting electrostatic effect, I have returned, aged 47, to my old books in physics. It turns out that my books delight in using Gauss theorem etc. in rather ideal geometrical surface charge distribution, but never gave me the tools to answer to this simple...
  44. Kaan99

    Electrostatic self-force is zero

    Homework Statement Consider a charged body of finite size, (\rho=0 outside a bounded region V). \vec{E} is the electric field produced by the body. Suppose \vec{E} \rightarrow 0 at infinity. Show that the total self-force is zero: \int_V \rho \vec{E} dV = \vec{0}, i.e. the charged body does not...
  45. Alan Lins Alves

    Problem with the Finite Element Method applied to Electrostatics

    Hi! I have a code that solve the poisson equation for FEM in temperature problems. I tested the code for temperature problems and it works! Now i have to solve an Electrostatic problem. There is the mesh of my problem (img 01). At the left side of the mesh we have V=0 (potencial). There is a...
Back
Top