Solve Calc 2 Integral 0 to h: 1/((h-r)^2+r^2))

  • Thread starter Thread starter t8ened
  • Start date Start date
  • Tags Tags
    Calc 2 Em
t8ened
Messages
1
Reaction score
0

Homework Statement


this integral owned me, can anyone tell me what to do to solve it/ how to solve it or a step by step solution. from 0 to h, 1/((h-r)^2+r^2))dr


Homework Equations





The Attempt at a Solution


Im thinking partial factions or trig sub...
 
Physics news on Phys.org
Let's look at the denominator.
(h - r)^2 + r^2 = h^2 - 2hr + r^2 + r^2
= 2r^2 - 2hr + h^2
= 2(r^2 - rh) + h^2

Now, complete the square in the first expression to get
2(r - A)^2 + B^2 (you'll have to figure out A and B)

The antiderivative of the expression above is K * arctan(something) + C.

Enough of a hint?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top