Volume of Silo bin with Cone top

  • Thread starter Thread starter zeshkani1985
  • Start date Start date
  • Tags Tags
    Bin Cone Volume
AI Thread Summary
To calculate the volume of a silo bin with a conical top, the volume is determined using the cone formula when the height of the product is less than or equal to the conical height. If the height exceeds the conical section, the cylindrical volume must be added to the conical volume. For a conical height of 3.0 m and a cylindrical height of 7.0 m, the total volume calculated is approximately 100 m³. The formulas used for these calculations are confirmed to be correct. The discussion emphasizes the importance of applying the right equations based on the height of the stored material.
zeshkani1985
Messages
15
Reaction score
0
To calculate the volume of the contents you use the formula for a cone, as long as the height of the product, h, is less than or equal to the height of the conical section, hcone.
V=1/3rh2h if h ≤ hcone
and rh is the radius at height h: rh=tan∅ if rh ≤ R.

If the height of the stored product is greater than the height of the conical section, the equation for a cylinder must be added to the volume of the cone:
V=1/3∏r2hcone+∏r2(h-hcone) if h > hcone.
If the height of the conical section is 3.0 m, the radius of the cylindrical section is 2.0 m, and the total height of the storage bin is 10.0 m, what is the maximum volume of material that can be stored?

here is what i did. I found the volume of the cone since it says we are given a conical height of 3 and the radius of 2 so i get a volume of about 12m3 and I get the cylinidrical volume by just V=∏r2h since were are given the total height of the bin at 10m so the cylinder must be 7m tall since (10-3hcone=7) and the volume of the cylinder is about 87m3 so the total volume is them combined to give me a total volume of around V=100m3

is this right?
 
Physics news on Phys.org
zeshkani1985 said:
To calculate the volume of the contents you use the formula for a cone, as long as the height of the product, h, is less than or equal to the height of the conical section, hcone.
V=1/3rh2h if h ≤ hcone
and rh is the radius at height h: rh=tan∅ if rh ≤ R.

If the height of the stored product is greater than the height of the conical section, the equation for a cylinder must be added to the volume of the cone:
V=1/3∏r2hcone+∏r2(h-hcone) if h > hcone.
If the height of the conical section is 3.0 m, the radius of the cylindrical section is 2.0 m, and the total height of the storage bin is 10.0 m, what is the maximum volume of material that can be stored?

here is what i did. I found the volume of the cone since it says we are given a conical height of 3 and the radius of 2 so i get a volume of about 12m3 and I get the cylinidrical volume by just V=∏r2h since were are given the total height of the bin at 10m so the cylinder must be 7m tall since (10-3hcone=7) and the volume of the cylinder is about 87m3 so the total volume is them combined to give me a total volume of around V=100m3

is this right?
The formula V=1/3∏r2hcone+∏r2(h-hcone) is correct. So one is looking for the total volume subject to the constraint of the given dimensions.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top