I see several levels of misunderstanding here.
First, when we look at the NMR case, we need to keep in mind that the magnetization here is the result of the BULK magnetization from the whole material. This is the sum of ALL the individual magnetic moment of nucleus in that material, and at a finite temperature. What this means is that there is a population statistics of magnetic moments that are alligned and anti-alligned with the external field. So even in principle, at a non-zero temperature, the net magnetization is NEVER the total sum of ALL the individual magnetic moment.
Secondly, there is a problem with the question: "I would like to know how the magnetic field generated by spinning protons interacts with the external B-field."
If you look at the history of this thing, you would have seen that what is discovered FIRST is the magnetic moment of particles such as electrons and protons, etc. In other words, we first detected that they interact with an external magnetic field. Thus, we know they have magnetic moments. Since our knowledge back then only state that anything with a magnetic moment should have a charge "spinning", we gave a property of spin to these particles. Only later did we know better, that what we thought we knew isn't really the case, but the name stuck anyway since anyone who have studied QM would have realized that it is just a LABEL with only a historical context.
So what you are asking for is to explain why something that doesn't exist explain something that does exist. Do you see why this is almost impossible to answer? If you ask "what is the origin of the magnetic moment in protons, electrons, neutrons, etc.", then that would have some meaning, and spin physics is a very active topic of reserach. However, asking how the spinning proton generates a magnetic moment cannot elicit any reasonable answer since you are trying to connect something that doesn't exist (spinning proton) with something that is (magnetic moment).
Zz.