If we have a medium (say, glass) with an index of refraction, n=1.33, the speed of light in it will be c/1.33. However, blue light travels slower in glass than does red light. Since c is constant and the speed of light is changing, doesn't that mean that the index of refraction will vary based...
Homework Statement
A beam of white light goes from air into water at an incident angle of 75 deg. What is the critical angle that the violet (410 nm) parts of the light is refracted?
Homework Equations
n1sin(θ1)=n2sin(θ2)
n=c/v
c=λf
The Attempt at a Solution
So sure, I get that the answer is...
Homework Statement
Eyeglass lenses can be coated on the inner surfaces to reduce the reflection of stray light to the eye. If the lenses are medium flint glass of refractive index 1.62 and the coating is fluorite of refractive index 1.432, (a) what minimum thickness of film is needed on the...
Homework Statement
A laser is fired into a wet paper placed ontop of a glass plate of thickness ##d## and an angle of ##0## degrees. When the light hits the paper and goes through the plate it forms a circle of light of radius ##R##. What is the index of refraction of the glass plate?
Homework...
The question
A microscope is focused on a black dot. When a 1.20 cm -thick piece of plastic is placed over the dot, the microscope objective has to be raised 0.380 cm to bring the dot back into focus.
What is the index of refraction of the plastic
Relevant equations/ideas...
The best known effect of birefringence is the lateral displacement of the extraordinary image. Why is this effect rarely quantified? I couldn't find a table of materials specifying the deviation angle δ of the extraordinary ray (say, for an angle of incidence equal to zero). Birefringence seems...
Homework Statement
A light ray enters the atmosphere of the Earth and descends vertically to the surface a distance h = 101.2-km below. The index of refraction where the light enters the atmosphere is n = 1.00 and it increases linearly with distance to a value of n= 1.000293 at the Earth's...
Hello All,
I am having some issues with calculating the measurement uncertainty when there is a mismatch in the index of refraction between a fluid and an interface. If am using an unobtrusive measurement technique such as Laser Doppler Velocimetry, how would I be able to quantify the...
I'm revising for a uni exam with past exam papers, and have gotten stuck on the details of dispersion. The two exam questions prompting this are a) What is the physical reason why the index of refraction for blue light is bigger than that of red light? and b) Explain how dispersion makes a...
If you have the same liquid, water, but with different ions dissociated in it, changing it's colligative properties, does the index of refraction change? And/or does the speed of sound through it change?
As revision for my upcoming physics exam, I'm doing an old exam paper from a previous year of the course, for which the answers aren't published. However, I'm stuck on a basic angle of refraction question:
"A light ray makes an angle of 35degrees to the surface of an oil layer. [A diagram is...
Hello All,
Using Snell's Law, it is pretty obvious how to calculate the angle of refraction when both index of refractions are known. My question is how would I apply this to a 3 dimensional situation, such as light refraction in a sphere? Since there are two angles in relation to the normal...
Homework Statement
Homework Equations
Snell's Law
n1sin(theta_1)=n2sin(theta_2)
Total Internal Refraction:
sin(theta_c)=(n_2/n_1)
lambda_n=lambda_n
The Attempt at a Solution
So I drew the triangle and this is what I got, and well here is just a picture so far of what I have.
[/B]
I've...
Homework Statement
Given a "new type" of optical fiber (index of refraction n = 1.23), a laser beam is incident on the flat end of a straight fiber in air. Assume nair = 1.00. What is the maximum angle of incidence Ø1 if the beam is not to escape from the fiber? (See attached file for...
Homework Statement
Unpolarized light hits a flat glass surface, 37.5 degrees to the surface's normal. The reflected light's polarization is investigated with a polaroid. The relationship between the max and min value of intensity from the polaroid when it is rotated is 4.0. What is the index of...
Hello All,
I would like to start learning how to ray trace but the tracing through a tube with a thickness of t has got me stumped. If I have an n1 (outside tube), n2 (Tube), and n3 (inside tube). n1≠n2≠n3. Knowing Θ1 (the angle of incidence in relation to the normal), I can calculate Θ2 from...
I know that the refractive index is determined by a material's dielectric constant and magnetic permeability.
It's also true that we can treat the refractive index as a complex function with the imaginary part giving you an absorption spectrum.
You can then get the index of refraction from...
Homework Statement
In a physics lab, light with a wavelength of 570nmtravels in air from a laser to a photocell in a time of 17.5ns . When a slab of glass with a thickness of 0.890m is placed in the light beam, with the beam incident along the normal to the parallel faces of the slab, it takes...
I'm interested in predicting the index of refraction of atmospheric air and several nonpolar gases at room temperature for pressures of 1 atm - 0 atm. I'm not really sure where to get started. I have found the relation n=\sqrt{1+\frac{3AP}{RT}} but I don't really get where it comes from. Well...