What is Lagrangian: Definition and 1000 Discussions

Introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in 1788, Lagrangian mechanics is a formulation of classical mechanics and is founded on the stationary action principle.
Lagrangian mechanics defines a mechanical system to be a pair



(
M
,
L
)


{\displaystyle (M,L)}
of a configuration space



M


{\displaystyle M}
and a smooth function



L
=
L
(
q
,
v
,
t
)


{\displaystyle L=L(q,v,t)}
called Lagrangian. By convention,



L
=
T

V
,


{\displaystyle L=T-V,}
where



T


{\displaystyle T}
and



V


{\displaystyle V}
are the kinetic and potential energy of the system, respectively. Here



q

M
,


{\displaystyle q\in M,}
and



v


{\displaystyle v}
is the velocity vector at



q


{\displaystyle q}




(
v


{\displaystyle (v}
is tangential to



M
)
.


{\displaystyle M).}
(For those familiar with tangent bundles,



L
:
T
M
×


R


t




R

,


{\displaystyle L:TM\times \mathbb {R} _{t}\to \mathbb {R} ,}
and



v


T

q


M
)
.


{\displaystyle v\in T_{q}M).}

Given the time instants




t

1




{\displaystyle t_{1}}
and




t

2


,


{\displaystyle t_{2},}
Lagrangian mechanics postulates that a smooth path




x

0


:
[

t

1


,

t

2


]

M


{\displaystyle x_{0}:[t_{1},t_{2}]\to M}
describes the time evolution of the given system if and only if




x

0




{\displaystyle x_{0}}
is a stationary point of the action functional






S


[
x
]





=


def









t

1





t

2




L
(
x
(
t
)
,



x
˙



(
t
)
,
t
)

d
t
.


{\displaystyle {\cal {S}}[x]\,{\stackrel {\text{def}}{=}}\,\int _{t_{1}}^{t_{2}}L(x(t),{\dot {x}}(t),t)\,dt.}
If



M


{\displaystyle M}
is an open subset of





R


n




{\displaystyle \mathbb {R} ^{n}}
and




t

1


,


{\displaystyle t_{1},}





t

2




{\displaystyle t_{2}}
are finite, then the smooth path




x

0




{\displaystyle x_{0}}
is a stationary point of





S




{\displaystyle {\cal {S}}}
if all its directional derivatives at




x

0




{\displaystyle x_{0}}
vanish, i.e., for every smooth



δ
:
[

t

1


,

t

2


]



R


n


,


{\displaystyle \delta :[t_{1},t_{2}]\to \mathbb {R} ^{n},}





δ


S







=


def







d

d
ε






|



ε
=
0




S



[


x

0


+
ε
δ

]

=
0.


{\displaystyle \delta {\cal {S}}\ {\stackrel {\text{def}}{=}}\ {\frac {d}{d\varepsilon }}{\Biggl |}_{\varepsilon =0}{\cal {S}}\left[x_{0}+\varepsilon \delta \right]=0.}
The function



δ
(
t
)


{\displaystyle \delta (t)}
on the right-hand side is called perturbation or virtual displacement. The directional derivative



δ


S




{\displaystyle \delta {\cal {S}}}
on the left is known as variation in physics and Gateaux derivative in Mathematics.
Lagrangian mechanics has been extended to allow for non-conservative forces.

View More On Wikipedia.org
  1. Leo Liu

    Optimization with Lagrangian Multipliers

    Problem: Solution: My question: My reasoning was that if x is max at the point then the gradient vector of g at the point has only x component; that is ##g_y=0,\, g_z=0##. This way I got: $$\begin{cases} 4y^3+x+z=0\\ \\ 4z^3+x+y=0\\ \\ \underbrace{x^4+y^4+z^4+xy+yz+zx=6}_\text{constraint...
  2. Admiralibr123

    Sign of potential term in Lagrangian mechanics

    I have heard many times that it does not matter where you put the zero to calculate the potential energy and then ##L=T-V##. But mostly what we are doing is taking potential energy negative like in an atom for electron or a mass in gravitational field and then effectively adding it to kinetic...
  3. F

    Energy-momentum tensor for a relativistic system of particles

    I think it is quite simple as an exercise, following the two relevant equations, but at the beginning I find myself stuck in going to identify the lagrangian for a relativistic system of non-interacting particles. For a free relativistic particle I know that lagrangian is...
  4. D

    Lagrangian of a mass bewteen two springs with a pendulum hanging down

    What I first did was setting the reference system on the left corner. Then, I said that the position of the mass ##m_2## is ##x_2##. I also supposed that the pendulum makes an angle ##\theta## with respect to the vertical axis ##y##. So the generalized coordinates of the system would be ##x_2##...
  5. lambdajitsu

    A Lagrangian for straight line in XY-plane (dependent on time)

    https://dst-public.s3-us-west-2.amazonaws.com/lagrangian.png
  6. R

    Particle constrained on a curve

    I tried 1. using the Lagrangian method: From ##y=-kx^2## I got ##\dot y = -2kx \dot x## and ##\ddot y = -2k \dot x^2 - 2 kx \dot x##. (Can I use ##\dot y = g## here due to gravity?) This gives for kinetic energy: $$T = \frac{1}{2} mv^2 = \frac{1}{2} m (\dot x^2 + \dot y^2) = \frac{1}{2} m (\dot...
  7. Pouramat

    Variation principle -- looking for resources to read and understand

    Summary:: Can anyone introduce an informative resource with solved examples for learning variation principle? For example I cannot do the variation for the electromagnetic lagrangian when ##A_\mu J^\mu## added to the free lagrangian and also some other terms which are possible: $$ L =...
  8. B

    The definition of generalised momentum

    Why, in lagrangian mechanics, do we calculate: ##\frac{d}{dt}\frac{\partial T}{\partial \dot{q}}## to get the (generalised) momentum change in time instead of ##\frac{d T}{dq}##? (T - kinetic energy; q - generalised coordinate; p - generalised momentum; for simplicity I assumed that no external...
  9. F

    Lagrangian for the electromagnetic field coupled to a scalar field

    It is the first time that I am faced with a complex field, I would not want to be wrong about how to solve this type of problem. Usually to solve the equations of motion I apply the Euler Lagrange equations. $$\partial_\mu\frac{\partial L}{\partial \phi/_\mu}-\frac{\partial L}{\partial \phi}=0$$...
  10. Wizard

    A Parametric Lagrangian is a Homogeneous Form in Parametric Velocities?

    In the book "The Variational Principles of Mechanics" by Cornelius Lanczos, the following statement is made about a lagrangian ##L_1## where time is given as an dependent parameter, and a new parameter ##\tau## is introduced as the independent variable, see (610.3) and (610.4) pg. 186,187 Dover...
  11. D

    I Exploring Matter in General Relativity: Understanding the Lagrangian

    I was going over the Einstein-Hilbert action derivation of the Einstein field equations and came across a term that does not seem to be explicitly defined. That term is the Langragian for the matter fields. What exactly is matter in General relativity in the context of the Lagrangian? Here is...
  12. Another

    Question about Lagrangian density

    this figure form ( https://en.wikipedia.org/wiki/Effective_mass_(spring%E2%80%93mass_system) ) massive spring ; m K.E. of total spring equal to ## K.E. = \frac{1}{2} \sum dm_i v_i^2 = \frac{1}{2} \sum \rho dy (Vy/L)^2## V is the speed at the end of the spring and V are same speed of mass M...
  13. steve1763

    A Exploring Free and Interaction Terms of L in Quantum Field Theory

    With free part L=-½(∂Φ)^2 -½m^2 Φ^2 and interaction term L=½gΦ^2Any help would be appreciated, thank you.
  14. PaBlo14101066

    Lagrangian function of a double undamped pendulum

    I must find the Lagrangian for an undamped pendulum using the diagram showed below, I've no idea what to do with the second angle φ2 because is measured from the line that joins the two pivot points. The ecuations I must obtain are as follows I get so many different things but I can't reach...
  15. H

    Plane pendulum: Lagrangian, Hamiltonian and energy conservation

    Hello! I need some help with this problem. I've solved most of it, but I need some help with the Hamiltonian. I will run through the problem as I've solved it, but it's the Hamiltonian at the end that gives me trouble. To find the Lagrangian, start by finding the x- and y-positions of the...
  16. D.S.Beyer

    B Lagrangian Point in General Relativity

    Is there a relationship between the Lagrangian ‘hill diagram’ and the spacetime curvature embedment graphs? The Lagrangian map shows effective potential, which deals with centrifugal force. As centrifugal force is a fictitious force (and gravity is as well), I would assume the underlying...
  17. joneall

    I Gauge theory symmetry breaking in L&B

    I’m reading Lancaster & Blundell, Quantum field theory for the gifted amateur (even tho I”m only an amateur...) and have a problem with their explanation of symmetry breaking from page 242. They start with this Lagrangian: ## \mathcal{L} = (\partial_{\mu} \psi^{\dagger} - iq...
  18. LCSphysicist

    Find the Lagrangian of a pendulum plane

    Pendulum plane, which suspension executes a horizontal harmonic motion $$x = acos(\gamma t)$$ Position P, orientation x to right and y points below, phi is the pendulum's angle wrt y. $$P = (acos(\gamma t) + lsin(\phi(t)), lcos(\phi(t)) )$$ So executing all that is necessary, i found it...
  19. F

    A Demonstration of the Brans-Dicke's Lagrangian

    Helo, The Lagrangian in general relativity is written in the following form: \begin {aligned} \mathcal {L} & = \frac {1} {2} g ^ {\mu \nu} \nabla \mu \phi \nabla \nu \phi-V (\phi) \\ & = R + \dfrac {16 \pi G} {c ^ {4}} \mathcal {L} _ {\mathcal {M}} \end {aligned} with ## g ^ {\mu \nu}: ## the...
  20. joneall

    A Symmetry of QED interaction Lagrangian

    I am trying to get a foothold on QFT using several books (Lancaster & Blundell, Klauber, Schwichtenberg, Jeevanjee), but sometimes have trouble seeing the forest for all the trees. My problem concerns the equation of QED in the form $$ \mathcal{L}_{Dirac+Proca+int} = \bar{\Psi} ( i \gamma_{\mu}...
  21. LCSphysicist

    Bead on a rotating stick and the Lagrangian

    A stick is pivoted at the origin and is arranged to swing around in a horizontal plane at constant angular speed ω. A bead of mass m slides frictionlessly along the stick. Let r be the radial position of the bead. Find the conserved quantity E given in Eq. (6.52). Explain why this quantity is...
  22. JD_PM

    Classical Book on discrete mechanics (particularly interested in Lagrangian)

    Hi.I am looking for a book to learn about discrete mechanics (i.e. working in a 3D lattice instead of ##n## generalized coordinates). I am particularly interested in how to derive the discrete E-L equations by extremizing the action. I have checked Gregory and Goldstein but they do not deal...
  23. JD_PM

    Minimal substitution on the Lagrangian of the complex KG field

    a) I think I got this one right. Please let me know otherwise We have (let's leave the ##x## dependence of the fields implicit :wink:) $$\mathscr{L} = N \Big(\partial_{\alpha} \phi \partial^{\alpha} \phi^{\dagger} - \mu^2 \phi \phi^{\dagger} \Big) = \partial_{\alpha} \phi^{\dagger}...
  24. Another

    Problem about Lagrangian mechanics

    In Solution https://www.slader.com/textbook/9780201657029-classical-mechanics-3rd-edition/67/derivations-and-exercises/20/ In the question say the wedge can move without friction on a smooth surface. Why does the potential energy of the wedge appear in Lagrangian? (You can see the Larangian...
  25. A

    I What does it mean for a Lagrangian to have "explicit" time dependence?

    Suppose I had a Lagrangian $$L = q+ \dot{q}^2 + t.$$ This has explicit time dependence. Now consider another Lagrangian: $$L = q+ \dot{q}^2 .$$ Which has no explicit time dependence. But after solving for the equations of motion, I get $$\dot{q} = t/2 + C.$$ So I could now write my Lagrangian...
  26. T

    Lagrangian mechanics, system of a spring and a pendulum

    Hello! I have some problem getting the correct answer for (b). My FBD: For part (a) my lagrangian is $$L=T-V\iff L=\frac{1}{2}m(b\dot{\theta})^2+mg(b-b\cos\theta)-\frac{1}{2}k\boldsymbol{x}^2,\ where\ \boldsymbol{x}=\sqrt{(1.25b-b)^2+(b\sin\theta)^2}-(1.25b-0.25b)$$ Hence my equation of...
  27. S

    I Wilson's RG trajectories, Lagrangians and many worlds?

    In this article [1] we can read an explanation about Wilson's approach to renormalization I have read that Kenneth G Wilson favoured the path integral/many histories interpretation of Feynman in quantum mechanics to explain it. I was wondering if he did also consider that multiple worlds...
  28. A

    A Why do we extremize the Lagrangian in the Hamilton principle instead of energy?

    I know that by extremizing lagrangian we get equations of motions. But what if we extremize the energy? I am just little bit of confused, any help is appreciated.
  29. fabstr1

    Simplification of the Proca Lagrangian

    Hello, I'm trying to figure out where the term (3) came from. This is from a textbook which doesn't explain how they do it. ∂_μ(∂L/(∂(∂_μA_ν)) = ∂L/∂A_ν (1) L = -(1/16*pi) * ( ∂^(μ)A^(ν) - ∂^(ν)A^(μ))(∂_(μ)A_(ν) - ∂_(ν)A_(μ)) + 1/(8*pi) * (mc/hbar)^2* A^ν A_ν (2) Here is Eq (1) the...
  30. Hamiltonian

    I Lagrangian and the Euler Lagrange equation

    I am new to Lagrangian mechanics and I am unable to comprehend why the Euler Lagrange equation works, and also what really is the significance of the lagrangian.
  31. G

    Question about using the Lagrangian for a spinning rubber band problem

    Hello, I am having trouble applying Lagrangian to this problem: A uniform thin circular rubber band of mass ##M ## and spring constant k has an original radius ##R##. Now it is tossed into the air. Assume it remains circular when stabilized in air and rotates at angular speed ##\omega## about...
  32. T

    Euler Lagrange equation and a varying Lagrangian

    Hello, I have been working on the three-dimensional topological massive gravity (I'm new to this field) and I already faced the first problem concerning the mathematics, after deriving the lagrangian from the action I had a problem in variating it Here is the Lagrangian The first variation...
  33. LuccaP4

    Lagrangian mechanics: central-force-like problem

    I copy again the statement here: So, I think I solved parts a to c but I don't get part d. I couldn't even start it because I don't understand how to set the problem. I think it refers to some kind of motion like this one in the picture, so I'll have a maximum and a minimum r, and I can get...
  34. PeroK

    I Dirac Lagrangian and Covariant derivative

    This is from Griffiths particle physics, page 360. We have the full Dirac Lagrangian: $$\mathcal L = [i\hbar c \bar \psi \gamma^{\mu} \partial_{\mu} \psi - mc^2 \bar \psi \psi] - [\frac 1 {16\pi} F^{\mu \nu}F_{\mu \nu}] - (q\bar \psi \gamma^{\mu} \psi)A_{\mu}$$ This is invariant under the joint...
  35. D

    Simple pendulum of variable mass

    Hello, I've got to rationally analice the form of the solutions for the equations of motion of a simple pendulum with a varying mass hanging from its thread of length ##l## (being this length constant). I approached this with lagrangian mechanics, asumming the positive ##y## direction is...
  36. J

    I Changing spherical coordinates in a Lagrangian

    In order to compute de lagrangian in spherical coordinates, one usually writes the following expression for the kinetic energy: $$T = \dfrac{1}{2} m ( \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\phi}^2 )\ ,$$ where ##\theta## is the colatitud or polar angle and ##\phi## is the...
  37. LCSphysicist

    What is the minimum mathematic requirement for learning Lagrangian and Hamiltonian mechanics?

    Homework Statement:: ... Relevant Equations:: . What is the minimum mathematic requirement to the Lagrangian and hamiltonian mechanics? Maybe calc 3 and linear algebra?
  38. M

    Converting a Lagrangian to a Hamiltonian

    Given the following $$L(\theta,\dot{\theta},\phi,\dot{\phi}) = \frac12ml^2((\dot{\theta})^2 + (sin(\theta)^2)\dot{\phi}^2) + k\theta^4$$ This is my attempt: I am not understanding if the conserved quantities (like angular momentum about the z-axis) impacts my formulation of the Hamiltonian or...
  39. M

    Adding a variable to a Lagrangian

    Would the following: $$ L = m(\vec{\dot r + \vec v})$$ (constant velocity added to above eq.) lead to equivalent euler-lagrange equations due to the fact that the ratio of T and V is unaffected by an increase in constant velocity? And would this be an example of energy conservation?
  40. tanaygupta2000

    Lagrangian of a spring mass system

    I know that from the given problem, I need to find the expression for Kinetic energy, KE = 1/2 m [r(dot)]^2 and Potential energy, PE = 1/2 k r^2 So L = 1/2 m [r(dot)]^2 - 1/2 k r^2 Hence H = 1/2 m [r(dot)]^2 + 1/2 k r^2 I assume that the fixed length r0 is provided to find the value of end...
  41. G

    Checking Parity Invariance of the QED Lagrangian

    Hi, I'm trying to check that the QED Lagrangian $$\mathscr{L}=\bar{\psi}\left(i\!\!\not{\!\partial}-m\right)\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} - J^\mu A_\mu$$ is parity invariant, I'm using the general transformations under parity given by $$\psi(x) \rightarrow...
  42. G

    A Validity of Scalar Field Lagrangian with Linear and Quadratic Terms

    Hi, if I want to construct the most general Lagrangian of a single scalar field up to two fields and two derivatives, I usually see that is $$\mathscr{L} = \phi \square \phi + c_2 \phi^2$$ i.e. the Klein-Gordon Lagrangian. My question is, would be valid the Lagrangian $$\mathscr{L} = \phi...
  43. JD_PM

    Show the invariance of the complex-scalar-field Lagrangian

    a) Alright, I think that the trick here is to consider ##\phi^{\dagger}## and ##\phi## as independent scalar fields. I've read that the unitary matrices read as follows $$U = e^{i \epsilon}$$ Thus here we have to consider two separate transformations $$\phi \rightarrow \phi' = e^{i...
  44. P

    Lagrangian with angular velocity not constant

    Summary:: not constant spin How could I calculate the system lagrangian in function of the generalised coordinates and the conserved quantities associated to the system symmetries? I've been struggling for the case with not constant angular velocity, but I don't realize what I have to do...
  45. JD_PM

    Get the equation of motion given a Lagrangian density

    a) Alright here we have to use Euler-Lagrange equation $$\partial_{\alpha} \Big( \frac{\partial \mathcal{L}}{\partial(\partial_{\mu} A_{\nu})} \Big) - \frac{\partial \mathcal{L}}{\partial A_{\nu}} = 0$$ Let's focus on the term ##\frac{\partial \mathcal{L}}{\partial (\partial_{\alpha}...
  46. G

    A Moller Tetrad Gravitational Lagrangian: Limits on Lambda?

    This is a quite specific question, but maybe someone knows (part of) the answers, what would be much appreciated. The Moller (the o is a specific Danish character) Lagrangian for gravitation reads (see for example Aldrovandi-Pereira, Teleparallel Gravity, Springer 2013) ##L = \partial_\mu...
  47. JD_PM

    Computing an Energy-Momentum tensor given a Lagrangian

    REMARK: First of all I have to say that this Lagrangian reminds me of the Lagrangian from which we can derive Maxwell's equations, which is (reference: Tong QFT lecture notes, equation 1.18; I have attached the PDF). $$\mathcal{L} = -\frac 1 2 (\partial_{\mu} A_{\nu} )(\partial^{\mu} A^{\nu}) +...
  48. JD_PM

    Find a transformation that leaves the given Lagrangian invariant

    The given Lagrangian is: ##L = \frac 1 2 m_1 ( \dot x_1^2 + \dot y_1^2 + \dot z_1^2) + \frac 1 2 m_2 ( \dot x_2^2 + \dot y_2^2 + \dot z_2^2) + G \frac{m_1 m_2}{\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2}}##Please note: I have been inspired by the post...
Back
Top